

January 2011

NASA/TM–2011-216879

Surrogate Modeling of High-Fidelity Fracture
Simulations for Real-Time Residual Strength
Predictions

Ashley D. Spear, Amanda R. Priest, Michael G. Veilleux, and Anthony R. Ingraffea
Cornell University, Ithaca, New York

Jacob D. Hochhalter
NASA Langley Research Center, Hampton, Virginia

NASA STI Program . . . in Profile

 Since its founding, NASA has been dedicated to
the advancement of aeronautics and space science.
The NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

 The NASA STI program operates under the
auspices of the Agency Chief Information Officer. It
collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI program
provides access to the NASA Aeronautics and Space
Database and its public interface, the NASA Technical
Report Server, thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

 TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

 TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

 CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

 CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

 SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

 TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

 Specialized services also include creating custom
thesauri, building customized databases, and
organizing and publishing research results.

 For more information about the NASA STI
program, see the following:

 Access the NASA STI program home page at

http://www.sti.nasa.gov

 E-mail your question via the Internet to

help@sti.nasa.gov

 Fax your question to the NASA STI Help Desk

at 443-757-5803

 Phone the NASA STI Help Desk at

443-757-5802

 Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

January 2011

NASA/TM–2011-216879

Surrogate Modeling of High-Fidelity Fracture
Simulations for Real-Time Residual Strength
Predictions

Ashley D. Spear, Amanda R. Priest, Michael G. Veilleux, and Anthony R. Ingraffea
Cornell University, Ithaca, New York

Jacob D. Hochhalter
NASA Langley Research Center, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

Surrogate Modeling of High-Fidelity Fracture

Simulations for Real-time Residual Strength

Predictions

Ashley D. Spear1, Amanda R. Priest2, Michael G. Veilleux3 and Anthony R. Ingra�ea4

Cornell University, Ithaca, NY 14853

Jacob D. Hochhalter5

NASA Langley Research Center, Hampton, VA 23681

A surrogate model methodology is described for predicting in real time the resid-

ual strength of �ight structures with discrete-source damage. Starting with design

of experiment, an arti�cial neural network is developed that takes as input discrete-

source damage parameters and outputs a prediction of the structural residual strength.

Target residual strength values used to train the arti�cial neural network are derived

from 3D �nite element-based fracture simulations. Two ductile fracture simulations are

presented to show that crack growth and residual strength are determined more accu-

rately in discrete-source damage cases by using an elastic-plastic fracture framework

rather than a linear-elastic fracture mechanics-based method. Improving accuracy of

the residual strength training data would, in turn, improve accuracy of the surrogate

model. When combined, the surrogate model methodology and high �delity fracture

simulation framework provide useful tools for adaptive �ight technology.

Nomenclature

1 Graduate Student, School of Civil and Environmental Engineering, 640 Rhodes Hall, AIAA Student Member.
2 Undergraduate Student, School of Civil and Environmental Engineering, 640 Rhodes Hall.
3 Graduate Student, School of Civil and Environmental Engineering, 640 Rhodes Hall.
4 Dwight C. Baum Professor of Engineering, School of Civil and Environmental Engineering, 643 Rhodes Hall.
5 Research Materials Engineer, Durability & Damage Tolerance Branch, MS 188E, AIAA Member.

1

E = elastic modulus (GPa)

ν = Poisson's ratio (mm/mm)

σy = yield stress (MPa)

STRI65 = quadratic triangular shell element in ABAQUS [1]

S8R = quadratic reduced-integration shell element in ABAQUS [1]

C3D10 = quadratic tetrahedral elements in ABAQUS [1]

C3D15 = quadratic wedge element in ABAQUS [1]

C3D20(R) = quadratic brick element (reduced-integration) in ABAQUS [1]

a = crack length (cm)

n = number of cracks in discrete-source damage

θ = orientation of discrete-source damage, angle between positive x axis and nearest crack

dx = distance from middle sti�ener to center of discrete-source damage (cm)

KI ,KII ,KIII = mode I, II, and III plane strain stress intensity factors (MPa
√
m)

KIc,KIIc = plane strain fracture toughness for modes I and II (MPa
√
m)

Pmax = damage-dependent allowable traction, residual strength (MPa)

P = applied traction (MPa)

MSE = mean squared error as de�ned by Eq. (2)

cv = correlation coe�cient as de�ned by Eq. (3)

CTD = magnitude of relative displacement between upper and lower fracture surfaces (mm)

CTDcrit = critical value of CTD (mm)

CTDI , CTDII , CTDIII = opening, in-plane sliding, out-of-plane shearing components of CTD

(mm)

d = �xed characteristic distance behind crack front where CTD is monitored (mm)

da = crack extension (mm)

(n) = script to denote mesh at nth crack increment

(n+ 1) = script to denote mesh at (n+ 1)th crack increment

2

I. Introduction

Resilient aircraft control involves adaptive responses to o�-nominal �ight conditions, including

the incurrence of structural discrete-source damage during �ight. Discrete-source damage is typically

manifested as a result of a structural impact event, including hail- and birdstrike. In 2003, an Airbus

A300 operated by DHL was struck by a surface-to-air missile after takeo� from Baghdad, Iraq,

causing discrete-source damage to crucial control surfaces of the left wing [2]. In 2008, a Boeing

747-438 operated by Qantas Airways incurred in-�ight structural damage to the fuselage and right

wing leading edge following the failure of an onboard oxygen cylinder [3]. Although the aircraft

landed safely in both cases, these examples motivate a need for more resilient, adaptive control

system responses.

In these types of cases, problems associated with in-�ight discrete-source damage, for example

inability to sustain original design loads, can be exacerbated by crack propagation from damaged

regions. To avoid unstable crack propagation, load levels must be maintained below a reduced

load-carrying capacity, or residual strength, of damaged �ight structures. Adaptive control system

responses might include automatic adjustment of certain �ight parameters (e.g. velocity, maximum

acceleration) to accommodate structural residual strength. This accommodation implies that accu-

rate residual strength predictions of �ight structures with complex damage con�gurations be made

in real time, during �ight ; this capability currently does not exist for commercial aviation.

Challenges to developing an adaptive response technology include accurately predicting residual

strength of discrete-source damaged structures both o�ine (i.e. during control system design) and

online (i.e. in real time onboard the aircraft). In the o�ine context, researchers have developed

various tools for determining residual strength of thin, damaged metallic structures using elastic-

plastic fracture mechanics (EPFM)-based numerical methods. For example, two common �nite

element (FE) modeling techniques involve nodal release and adaptive remeshing. Both techniques

represent cracks geometrically [4]. The former, however, prescribes possible crack trajectories, which

introduces inherent mesh dependencies into fracture simulations and limits generality of crack path

predictions. Nodal release techniques have been used in 2D [5�12] and in 3D [13�15] for studying

crack growth parameters and predicting residual strength of structures where the crack path was

3

known a priori and where mesh re�nement along the crack path su�ciently characterized growth

increments. Adaptive remeshing techniques avoid such mesh dependencies and enable simulation

of arbitrary crack propagation using evolutionary models or criteria [16�20]. Adaptive remeshing

techniques have been implemented in both 2D [21] and in 3D [22, 23]. Of the described techniques,

3D, adaptively remeshed, elastic-plastic tearing simulations provide the most general prediction

capabilities for crack growth and residual strength.

It is infeasible to perform a rigorous and computationally intensive crack growth simulation

within the possible short time span following a discrete-source damage event. Thus, an approxima-

tion, or surrogate model, is needed for making online predictions of residual strength. Queipo et al.

provided a complete description of surrogate modeling development and optimization [24]. With

regard to surrogate construction, they described both parametric (e.g. polynomial regression and

Kriging) and nonparametric (e.g. radial basis functions) approaches. In nonparametric approaches,

a global functional form relating system input to system response is not assumed.

Arti�cial neural networks (NNs) are a nonparametric surrogate modeling approach and are

trained to infer a nonlinear mapping from system input to system response, or output. The reader is

referred to [25] for an extensive methodology overview of the most widely used types of NN. Di�erent

types of NNs have been applied extensively for damage detection [26�32] and, to a much lesser extent,

for damage assessment. Ouenes et al. employed a NN methodology to predict fracture indicators

(e.g. density of fractures) in naturally fractured rock reservoirs as a function of various geological

and geophysical data [33]. Pidaparti et al. employed a NN to predict residual strength and corrosion

rate of aging aircraft panels with collinear multi-site damage by training with experimental results

and validating with both experimental results and analytical solutions [34]. Recently, Mohanty et

al. used a Gaussian process (GP) approach to predict fatigue crack growth in aluminum 2024-T351

specimens by training two distinct models, one presented with experimental load parameters as

input and another presented with piezoelectric sensor signals as input [35]. In that work, Mohanty

et al. used observed fatigue crack lengths and growth rates as known output for training each model.

Alternatively, NNs can be trained using results from numerical experiments, or simulations [36].

For example, Sankararaman et al. recently used linear-elastic fracture parameters computed from

4

FE analyses to train a GP model as part of a method to statistically infer equivalent initial �aw

size in fatigue applications [37]. High-�delity numerical simulations can provide training data when

analytically- and experimentally-derived data is limited due either to a lack of generally applicable

analytical solutions or to prohibitive costs of obtaining su�cient experimental data.

The purpose of the work presented here is two-fold: (1) to illustrate a methodology for creating

a surrogate model as a real-time residual strength prediction tool and (2) to describe and validate

numerical tools for making accurate residual strength predictions o�ine using fully 3D, elastic-

plastic, FE-based crack growth simulations. The high-�delity, more computationally expensive tools

described in (2) can provide training data that, when coupled with the surrogate model methodology

described in (1), can be used in the design of adaptive response technology.

Consistent with our two-fold purpose, this paper is divided into two primary sections. Section II

illustrates the methodology for developing a surrogate model (in particular, a NN) that predicts

residual strength as a function of discrete-source damage parameters. The methodology is illustrated

using a relatively simple proof-of-concept example. The procedure for gathering training data

is described in IIA and IIB. Because an implementation-ready NN is beyond the scope of this

paper, training data for the proof-of-concept example relies on reduced-order residual strength

approximations. After collecting training data, a simple NN is constructed in II C by optimizing

certain performance parameters. Finally, a sensitivity study is conducted in IID to understand the

e�ect of each damage parameter on predicted residual strength speci�cally for the proof-of-concept

structure.

Section III improves upon o�ine residual strength prediction tools used in Section II by simulat-

ing 3D, elastic-plastic tearing. The tools provide more general crack growth simulation capabilities

and can be used to generate accurate residual strength training data. Simulation results are vali-

dated in III C for a mixed-mode I/II fracture test and for a relatively large, integrally-sti�ened panel

(ISP) that exhibits crack branching.

Results and discussions from the NN proof-of-concept example and from the elastic-plastic tear-

ing simulations are provided in each respective section. Section IV o�ers a summary and conclusions

for the entirety of this work.

5

II. Neural Network Development and Methodology

This section describes the development of a surrogate model for predicting residual strength of

discrete-source damaged aircraft structures in real time. A global functional form is not assumed

for the nonlinear relationship between residual strength and the damage parameters in�uencing it;

thus, a nonparametric surrogate model is developed. In particular, a supervised NN is considered

due to rapid prediction capabilities amenable to real-time applications. In Fig. 1, the upper dashed

region shows the generalized procedure for developing a NN (surrogate model) that predicts residual

strength as a function of parameterized discrete-source damage. The lower dashed region shows the

functionality of the NN (surrogate model) in a real-time context.

Fig. 1 Upper dashed box illustrates a general approach for developing a surrogate model to
predict residual strength of damaged structures. Lower dashed box illustrates how the sur-
rogate model would function onboard an aircraft for predicting residual strength of damaged
structures in real time.

The �rst step in this type of surrogate model development is typically referred to as design of

experiment (DOE) [24] and involves obtaining data points that will be used to train and test the

NN. The DOE should be based on the intended application of the NN. For example, if the NN is

intended to provide residual strength predictions in terms of maximum allowable bending moment

in a damaged aircraft wing, then the data points should be gathered using an appropriate wing

structure with applied boundary conditions of interest. Each data point includes sampled input

variable(s) and corresponding known system response(s), called target output. Once the NN has

been trained to map given input to target output, it becomes a useful tool for predicting system

6

response when presented with new input that is within the training range but does not necessarily

correspond to data points used for training.

To illustrate the methodology, a simple NN is developed using a representative wing structure

and reduced-order (linear-elastic) approximations for predicting residual strength. The representa-

tive wing structure is a 61.0 x 91.4 cm2 integrally-sti�ened panel (ISP) with three blade sti�eners

each 5.1 cm in height, as shown in Fig. 2. The ISP skin and sti�eners are 2.3 mm thick. The panel

is modeled as linear-elastic with E = 71.0 GPa and ν = 0.33, similar to values for a 2XXX series

lower wing skin aluminum alloy (AA).

Fig. 2 Schematic of ISP model with dimensions similar to those in [38]. Plan view (top)
and cross-section showing integral blade sti�eners (bottom). A damage-containing region is
modeled using 3D solid elements (enclosed in shell-solid boundary) while remainder of panel
is modeled with shell elements. All dimensions in cm.

Multiple FE models of the uncracked panel are constructed using ABAQUS R⃝ [1]. A shell-solid

modeling technique is employed, where each panel is modeled using 3D solid elements in a region

that will contain damage and shell elements elsewhere, as depicted schematically in Fig. 2. In this

way, 3D constraint is inherently captured along crack fronts using fully 3D solid elements, while

shell elements help maintain a level of computational e�ciency without losing capability to capture

out-of-plane deformation and possible buckling. The shell and solid element regions are joined

using a coupling constraint, whereby resultant forces and moments acting at shell edge nodes on the

shell-solid boundary are distributed as forces acting at nodes located in a region of in�uence on the

7

solid surface of the shell-solid boundary. A mesh re�nement study is carried out to ensure adequate

discretization of the panel models. Uncracked panels are modeled using approximately 50 STRI65,

2000 S8R, and between 1800 and 17,300 C3D20R elements, depending on the size of the damaged

region. Boundary conditions for the ISP models are de�ned to emulate tensile loading conditions

for a region of the lower wing surface and are shown schematically in Fig. 2.

A supplementary study was carried out to determine shell-solid boundary e�ects on nearby

crack fronts in order to minimize the size of the solid region without a�ecting stress intensity factors

(SIFs) computed along nearby crack fronts. Maintaining fracture parameter accuracy is especially

important since fracture parameters are used to predict structural residual strength (described in

II B), which is in turn used to train the NN (described in IIC). The supplementary study considered

a 61.0 x 91.4 cm2 unsti�ened panel of the same (linear-elastic) material and thickness as the ISP

described above. The panel had a single, 12.7 cm long, centrally-located through-crack oriented in

the x direction (normal to applied tensile load). Both tensile and bending conditions were considered

in the study. The panel was modeled entirely with shell elements except for a region containing the

crack, which was modeled with 3D solid elements. All model parameters remained constant while

varying the size (both in-plane dimensions) of the square-shaped solid region, and therefore the

distance from the shell-solid boundary to the crack front. The size of the solid region was initially

slightly larger than the crack length and was increased until computed SIFs converged. Results from

the supplementary study indicated that for a static, linear-elastic crack, the distance from shell-solid

boundary to nearest crack front should be no less than 25% of the crack length. This ensures that

the shell-solid boundary has negligible e�ect on computed SIFs. The same rule-of-thumb is applied

to the example ISP models described in the NN study.

The following sections describe the generally applicable methodology for developing a NN as a

real-time residual strength prediction tool.

A. Input Variables: Discrete-source Damage Parameters

Discrete-source damage in this work is represented by a symmetric, star-shaped, array of equi-

length cracks, as depicted in Fig. 3(b). This representation of discrete-source damage is motivated

8

by observations of petaling caused by penetration damage to thin metallic structures, see Fig. 3(a).

If all of the cracks in the star-shaped array of Fig. 3(b) separate under load (i.e. there are no crack

closure e�ects), then the cracked region transfers no load and e�ectively represents a circular hole

with petaling edges, similar to that shown in Fig. 3(a). The damage representation is parameterized

by the four variables n, a, dx, and θ, which are postulated to in�uence residual strength of the ISP.

Fig. 3 (a) Petaling on the reverse side of a metallic sheet subject to explosive, discrete-source
damage [39]. (b) Schematic showing the representation and parameterization of discrete-
source in the NN example described in this work.

The sample space of damage con�gurations is de�ned by a range of values for each parameter.

Ranges can be speci�ed based on accident reports, photographic evidence, potential structural

threats, design speci�cations, and so forth. Inherently, the NN predictions are valid only for input

parameter values within the range of training data. Thus, it is necessary to de�ne the sample space

based on the particular NN application. In the example NN, ranges for each damage parameter

are limited to some extent by the ISP geometry. Each range is given in Table 1. The parameter

n, takes integer values ranging from two to six. The range of θ depends on n due to the de�nition

of orientation and the symmetry of the star-shaped con�guration. The range of a is de�ned in

terms of ISP bay width, from 1/8 ∗ baywidth to 1/4 ∗ baywidth. Due to symmetry of the ISP

9

model, the parameter dx ranges from 10.2 cm (damage centered in mid-bay) to 0 (damage centered

at middle sti�ener). If the damage is located such that the damage-containing, solid FE region

overlaps anywhere with the middle sti�ener, the sti�ener is assumed to be severed in the damaged

region and is modeled explicitly as such.

Table 1 Range of values associated with each damage parameter in the example NN.

Damage Parameter Range

n 2-6

θ: n = 2 (deg) 0-90

θ: n = 3 (deg) 0-60

θ: n = 4 (deg) 0-45

θ: n = 5 (deg) 0-36

θ: n = 6 (deg) 0-30

a (cm) 1.27-5.08

dx (cm) 0-10.2

The damage parameter space is sampled to obtain damage con�gurations, each expressed as

a combination of input parameters (n, θ, a, dx). The space of variables can be sampled using a

number of di�erent sampling methods, including random, strati�ed, and Latin Hypercube [40].

Latin Hypercube Sampling (LHS) is a type of strati�ed sampling method that guarantees each

partition, or stratum, of input variable space is sampled, though not necessarily uniformly. In this

work, LHS is performed �ve times for each of the variables (θ, a, and dx). Each of the �ve LHS runs

corresponds to a di�erent value of n (two, ..., six cracks) and requires the number of partitions to

be speci�ed. The MATLAB R⃝ implementation for LHS is used here [41], where output is provided

in the range from zero to one. Each sample value is then scaled to the respective parameter range

according to Table 1.

Table 2 shows all damage con�gurations (26 in total) that are modeled in the ISP NN example,

where each con�guration is expressed in terms of sampled input parameters. For each damage

con�guration, the x and y dimensions of the square, damage-containing, solid FE region are provided

in the sixth column. The x and y dimensions are each 25% larger than the diameter of the star-

shaped damage (i.e. 1.25 ∗ 2a), as suggested by the supplementary shell-solid boundary e�ect study

described above. The last column speci�es whether or not the solid, damaged region severs the

middle sti�ener. If so, the portion of the sti�ener that intersects the solid model region is removed;

10

otherwise the sti�ener remains intact.

Table 2 Damage con�gurations modeled in the ISP NN example. Each damage con�guration
is assigned an alphanumeric identi�cation with number corresponding to n. The sixth column
provides x and y dimensions of the square region in the shell-solid ISP.

Damage a dx θ n Solid region Severs

con�guration ID (cm) (cm) (deg) x,y dimensions (cm) sti�ener?

2A 3.8 7.1 21.8 2 9.39 NO

2B 4.2 2.1 87.8 2 10.48 YES

2C 3.0 3.6 2.2 2 7.53 YES

2D 1.4 0.2 35.7 2 3.49 YES

2E 2.3 9.9 36.5 2 5.66 NO

2F 4.5 6.1 44.9 2 11.25 NO

3A 3.7 8.3 5.0 3 9.36 NO

3B 1.5 0.6 25.2 3 3.72 YES

3C 2.9 9.6 23.2 3 7.15 NO

3D 4.0 3.7 32.9 3 9.88 YES

3E 4.6 1.7 10.4 3 11.56 YES

3F 2.0 6.3 38.6 3 4.92 NO

4A 1.7 6.5 6.6 4. 4.15 NO

4B 3.4 1.7 18.7 4 8.60 YES

4C 4.9 9.7 25.1 4 12.3 NO

4D 2.1 4.4 27.0 4 5.37 NO

4E 3.0 7.0 14.9 4 7.52 NO

5A 3.3 8.2 4.8 5 8.30 NO

5B 2.2 0.8 6.9 5 5.43 YES

5C 1.5 5.4 19.8 5 3.84 NO

5D 3.2 9.4 22.6 5 7.91 NO

6A 1.8 8.3 5.4 6 4.50 NO

6B 3.7 9.7 26.5 6 9.21 NO

6C 4.9 6.0 12.2 6 12.20 NO

6D 4.2 2.0 18.4 6 10.61 YES

6E 3.0 3.5 21.9 6 7.54 YES

B. Target Output: Residual Strength from Numerical Fracture Simulations

For each input damage con�guration, a numerical fracture simulation is employed to determine

residual strength, which provides target output used to train and test the NN. FRANC3D\NG [42]

is used to insert each parameterized star-shaped crack con�guration into the solid FE region of each

panel. An ABAQUS R⃝ contact algorithm is employed to prevent crack surfaces from overlapping

during the applied loading. Contact properties are de�ned as frictionless in the tangential direction

with �hard� pressure-overclosure behavior normal to the contacting crack surfaces, which minimizes

11

interpenetration. The FE models are then analyzed using ABAQUS R⃝, and FE analysis results are

post-processed to determine residual strength.

For the sake of illustrating the NN methodology, two simplifying assumptions are made here

to predict residual strength of the ISPs. First, the ISPs remain linear-elastic and can be analyzed

using LEFM parameters (SIFs). Second, the residual strength can be predicted for a static crack

con�guration (i.e. crack growth is not modeled in this example).

In the ISP NN example, the LEFM approximation of residual strength is based on mixed-mode

I/II fracture criteria [16, 18] to account for local mode mixity (in-plane) of angled cracks in the

star-shaped damage array. In [43], Broek describes a practical mixed-mode I/II failure envelope,

approximated by the equation of an ellipse:

(KI/KIc)
2 + (KII/KIIc)

2 = 1. (1)

For the AA 2XXX series material in the ISP example, KIc = 32 MPa
√
m, and KIIc is assumed to

be 10% less than KIc after results from the strain energy density criterion presented by Sih [18].

Using this mixed-mode LEFM-based approximation, residual strength is de�ned here as the

applied traction load, Fig. 2, that �rst causes unstable crack growth for any point along any crack

front of the star-shaped damage con�guration. In other words, as soon as one point along one crack

front reaches a critical combination (KI ,KII)c on the elliptical failure envelope, the entire panel is

assumed to fail. The method for determining the residual strength for each damaged panel is shown

in Fig. 4 and proceeds as follows: (1) analyze the ISP FE model with P ; (2) compute KI and KII

at each node along each crack front using FRANC3D\NG; (3) for each crack front node, �nd the

intersection point (KI ,KII)c of the elliptical failure envelope with a straight line from the origin to

the computed (KI ,KII) and subsequently �nd the linear scaling factor, λ, that maps (KI ,KII) to

(KI ,KII)c; (4) of all the computed scaling factors, select the most critical, λc; (5) calculate Pmax

as P scaled by λc.

To ensure that nonlinearity due to crack face contact does not invalidate the linear load scaling

approach described above, each of the damaged ISPs is reanalyzed with the respective scaled load,

12

Fig. 4 LEFM-based procedure for approximating residual strength of the damaged ISPs in
the NN example.

i.e. the approximated residual strength. In all cases, (KI ,KII) = (KI ,KII)c at the predicted crack

front failure point, indicating that the scaled loads indeed correspond to failure loads according to

the LEFM-based failure criterion assumed for this example problem. Values of Pmax provide the

target outputs used to train the NN.

C. Neural Network Construction

The inputs (sampled damage parameters) and target outputs (residual strength predictions from

numerical fracture simulations) are used to train and test a NN. For the ISP example, a feedforward

NN with a backpropagation learning rule [25, 44], which is a commonly used type of supervised

NN, is constructed using MATLAB R⃝ [41]. The NN consists of a single hidden layer mapping the

four-parameter input vectors (n, θ, a, dx) to the single-valued outputs (Pmax). The reader is referred

to [44] for a general discussion on NNs and details regarding speci�c implementation of the transfer

functions and training algorithm described next. A tan-sigmoid transfer function is employed to

map the weighted inputs plus bias to the interval (-1,1). A linear transfer function proportionally

maps the weighted output plus bias from the hidden layer to the output layer. Data presented

to the NN is divided into three sets�training, validation, and test. Weights and biases of the

NN are adjusted at each iteration, or epoch, using the training set and a Levenberg-Marquardt

optimization algorithm, as described in [45]. The algorithm seeks to improve performance of the

NN by minimizing error between the NN outputs and the target outputs. Weights and biases from

13

training at any epoch are then used to check performance of the NN using the validation and test

sets. The validation set prevents overtraining of the NN by ceasing training if performance degrades

over a certain number of successive epochs. The test set is not used for training but is used to test

NN accuracy following the current training epoch. The NN performance metric used here is the

MSE, calculated as:

MSE(i) =
1

Q(i)

Q(i)∑
k=1

(t
(i)
k − pk)

2, (2)

where the superscript (i) corresponds to the training, validation, or test set, Q is the number of

data points in the respective set, tk is target output for the kth input, and pk is output predicted

by the NN for the same kth input.

The NN can be optimized by adjusting any number of parameters, including transfer functions

between layers, number of hidden layers, various performance metrics, and so forth. In the ISP

example, the NN is optimized by varying the number of neurons in the hidden layer (4,5,6) and by

increasing size of the training set from 60%, to 70%, to 80% of the available data (with the balance

equally divided between validation and test sets). Further, the performance metrics are optimized

by minimizing MSE for the training and testing sets and by specifying that the correlation coe�cient

between NN output and targets should be at least 0.95 over the entire data set.

D. Parametric Sensitivity Studies

The trained NN is then employed to conduct parametric sensitivity studies, whereby sensitivity

of residual strength to each postulated damage parameter is gauged. The sensitivity studies are

carried out for con�guration 4E, Table 2, as it represents an average damage con�guration in terms

of n, a, and dx as compared to the other con�gurations.

A sensitivity study is carried out for each of the four damage parameters. In each study,

three damage parameters of con�guration 4E are held constant while one is varied. The variable

parameter in each study takes values in the range of the corresponding variable on which the NN

was trained. For example, the longest a considered in the sensitivity study is no longer than the

longest a used to train the NN, which is a = 4.9 cm in the ISP example (damage con�gurations

14

4C and 6C). Further, the variable parameter takes values that are equally incremented within the

respective range. Results from the study are presented in the following subsection.

E. Results and Discussion from Neural Network Example

Table 3 shows the approximated residual strengths of all damaged ISPs based on numerical

fracture analyses and LEFM assumptions outlined in II B. The table is sorted in order of increasing

residual strength, and the corresponding damage parameters are provided to help draw preliminary

conclusions. One immediate observation is that panels with severed sti�eners have lower (≈ 50 −

80 MPa) residual strengths, as expected. The single exception is damage con�guration 2B. Though

it severs the sti�ener, con�guration 2B is less critical than all other sti�ener-severing cases and some

intact-sti�ener cases because it is an n = 2 con�guration (straight crack) aligned with the loading

direction. Overall, the correlation between severed sti�ener and reduced residual strength highlights

the e�ect of the load carrying sti�ener on crack criticality.

The ISPs with the lowest computed residual strength (con�guration 3D) and highest computed

residual strength (con�guration 5C) are presented in Fig. 5. Each ISP is depicted with its respective

residual strength, or failure load, applied. The predicted point of �rst-failure lies along the crack

front indicated. Con�guration 5C has more cracks and is 62.5% smaller than con�guration 3D,

though it is not the smallest of all con�gurations. More importantly, con�guration 5C leaves the

sti�ener intact while con�guration 3D results in a severed sti�ener. For con�guration 3D, the crack

front that lies within the severed region and near the geometric discontinuity of the sti�ener junction

is subjected to higher stresses and is predicted to be critical.

The optimal NN consists of four neurons in a single hidden layer with 80% of available data (i.e.

twenty damage con�gurations) allocated to training. NN performance metric (MSE) as a function

of training epochs is plotted in Fig. 6 for training, validation, and test sets. The NN is best trained

at epoch 141, beyond which the MSE in the validation set continually increases and overtraining is

said to occur. At this epoch, MSE of the three sets are MSEtrain = 0.001, MSEval = 0.87, and

MSEtest = 0.30. Weights and biases connecting the input layer (damage parameters) to the hidden

layer and the hidden layer to the output (residual strength) at training epoch 141 are presented in

15

Table 3 LEFM-based residual strength approximations for all damage con�gurations consid-
ered in the ISP example, sorted by increasing residual strength.

Damage a dx Severs Pmax

con�guration ID (cm) (cm) sti�ener? (MPa)

3D 4.0 3.7 YES 54.2

6D 4.2 2.0 YES 56.8

3E 4.6 1.7 YES 56.8

4B 3.4 1.7 YES 58.1

6E 3.0 3.5 YES 63.5

2C 3.0 3.6 YES 67.6

5B 2.2 0.8 YES 71.2

3B 1.5 0.6 YES 73.8

2D 1.4 0.2 YES 80.7

6C 4.9 6.0 NO 82.7

4C 4.9 9.7 NO 83.9

2A 3.8 7.1 NO 89.1

3A 3.7 8.3 NO 90.3

2B 4.2 2.1 YES 93.8

5A 3.3 8.2 NO 94.3

4E 3.0 7.0 NO 98.4

5D 3.2 9.4 NO 101.5

2F 4.5 6.1 NO 102.1

6B 3.7 9.7 NO 109.2

3C 2.9 9.6 NO 110.2

4A 1.7 6.5 NO 124.9

3F 2.0 6.3 NO 128.2

2E 2.3 9.9 NO 129.5

6A 1.8 8.3 NO 130.7

4D 2.1 4.4 NO 132.8

5C 1.5 5.4 NO 146.7

Tables 4 and 5.

Considering the entire set of damage con�gurations, the NN predictions correlate well with

the target outputs at epoch 141, as depicted in Fig. 6. Despite the good overall correlation and

small MSE for the training set, the MSE in the validation and testing sets (which include only

three damage con�gurations each) may be too large for actual implementation onboard an aircraft,

depending on design speci�cations. It is suspected that adding more samples to the entire set of

damaged ISPs would further reduce these errors in the NN.

The in�uence of each damage parameter on predicted residual strength can be visualized graph-

ically by plotting predicted residual strength as a function of each damage parameter (see Fig. 7).

Sensitivity can be quanti�ed by a number of di�erent metrics, many of which yield comparable

16

Fig. 5 Two di�erent damaged panels (ID 5C and ID 3D) shown with respective Pmax applied.
Panels represent damage con�gurations that are least critical (a) and most critical (b) of
all con�gurations considered. Predicted failure point lies along the indicated crack front.
Deformation is scaled by factor of 10. FE mesh is not shown for better contour visualization.

Table 4 NN weights and biases used to map input layer to hidden layer for the optimized NN
at training epoch 141.

Input
parameter

Hidden layer neuron

1 2 3 4

Weights

n -0.43 -2.98 -1.11 1.83

a 0.69 -9.17 1.61 -2.27

x 3.58 -0.15 1.50 -8.74

θ -1.53 2.87 -2.96 5.58

Biases -0.42 0.45 1.37 2.94

results [46]. Here, sensitivity is quanti�ed by the cv, expressed as a percentage:

cv =
σ

P̄max
, where σ =

√∑N
i=1(Pmax,i − P̄max)

2

N − 1
. (3)

For any given sensitivity subset, i corresponds to the ith sample con�guration, P̄max is the average

17

Fig. 6 (a) NN performance as a function of training epochs for the optimized NN; overtraining
occurs after epoch 141. (b) Correlation between predicted and target residual strength values
considering all damage con�gurations.

Table 5 NN weights and bias used to map hidden layer to output for the optimized NN at
training epoch 141.

Hidden layer neuron Output

Weights

1 0.78

2 0.25

3 -1.70

4 1.05

Bias 1.29

residual strength of the subset, and N is the total number of damage con�gurations in the respective

18

subset. Sensitivities to each damage parameter are calculated as c
(x)
v = 24.8%, c

(a)
v = 16.6%,

c
(n)
v = 6.0%, and c

(θ)
v = 1.2%.

Orientation and number of cracks are found to have relatively minor in�uences on predicted

residual strength, which is apparent both by their sensitivity metrics and by the plots (b) and (d)

of Fig. 7. Crack length, on the other hand, has a more signi�cant in�uence and causes a reduction

in predicted residual strength as crack length increases, which is expected. What is unexpected,

however, is the step-like behavior depicted in Fig. 7(c). This behavior is caused by binary modeling

of the sti�ener (explicitly modeling as severed or intact), a feature that is inherently implicit in

both crack size and location. The sti�ener e�ect is also apparent in Fig. 7(a) of damage location

sensitivity. Predicted residual strength is lowest (and relatively insensitive to damage location) if

the damage is located such that it severs the sti�ener. As the damage location moves away from the

sti�ener and is no longer severing it, there is a linear increase in residual strength until the damage

is located within the middle quarter of the bay.

In general, the importance of this kind of sensitivity study is (1) to gain a better intuition of how

and why certain damage characteristics in�uence residual strength and (2) to potentially decrease

the dimensionality of the NN by neglecting parameters deemed insigni�cant.

III. 3D Elastic-plastic Fracture Simulations for Improved Neural Network Training

For discrete-source damage cases involving signi�cant ductile tearing, a generally applicable 3D

EPFM framework may be used for improving residual strength training data. An elastic-plastic

crack growth simulation procedure, as implemented in this section, is illustrated in Fig. 8 and

proceeds as follows:

1. de�ne an uncracked FE model and boundary conditions;

2. extract a sub-region of the mesh for crack insertion, remeshing, and reconnection with the

global mesh;

3. map previous deformation and material state onto the remeshed model;

4. perform nonlinear FE analysis and monitor the crack growth criterion;

19

Fig. 7 Sensitivity of predicted residual strength to each damage parameter.

5. once criterion is satis�ed, stop the current FE analysis to update crack con�guration, remesh

sub-region, and reconnect sub-region mesh with global mesh;

6. repeat from step 3 until critical crack length is achieved or until residual strength is attained.

The simulation procedure allows for prediction of curvilinear crack paths and arbitrary crack

front evolution. The EPFM framework was overviewed in [47] and is described here for completeness.

Scripts used for implementation are found in the Appendix.

A. Nonlinear Fracture Parameter: Crack-tip Displacement

In elastic-plastic tearing simulations, especially of thin metallic structures, crack growth should

be characterized by an appropriate nonlinear parameter. One such parameter arises from correlation

between crack growth and a critical amount of opening or displacement behind the crack tip (see

[48] for details). A criterion based on this parameter, which is called the crack-tip displacement

20

Fig. 8 Elastic-plastic crack growth simulation algorithm using FRANC3D\NG. Contributions
from this work include evaluation of crack-tip displacement (CTD) criterion during nonlin-
ear FE analysis and implementation of material state mapping algorithm following adaptive
remeshing.

(CTD) or sometimes referred to as the generalized crack (tip) opening displacement [22, 49], is

implemented here. Notably in simulation, once a critical value, CTDcrit , has been determined for

a speci�c material and thickness through a calibration procedure, the same CTDcrit is applicable

over a range of structural con�gurations comprising the same material and thickness under similar

loading. In the EPFM simulations here, CTD is computed as:

CTD =

√
CTDI

2 + CTDII
2 + CTDIII

2 (4a)

CTDI = v1 − v2 (4b)

CTDII = u1 − u2 (4c)

CTDIII = w1 − w2, (4d)

where u, v, and w correspond to displacements in the x, y, and z directions, respectively, and

subscripts 1 and 2 denote the two points used to compute CTD. CTD is computed between two

points that are initially coincident (one on each crack face) on the undeformed crack surface at a

distance, d, behind a crack front node (i.e. in the direction normal to the crack front at the particular

21

crack front node). This is illustrated schematically in 2D in Fig. 9. In 3D, CTD values are computed

behind multiple crack front nodes. The pair of initially coincident points where CTD is calculated

is called a CTD point. Element shape functions are used to interpolate displacements (u, v, w) such

that the CTD points need not correspond to nodal locations.

Fig. 9 Simpli�ed schematic of CTD implementation illustrated on crack pro�le.

Crack growth occurs when CTD attains a critical value, CTDcrit, within a speci�ed tolerance.

There are several ways to evaluate the CTD criterion when modeling a 3D crack front, including

evaluation at a single CTD point either midway along the crack front or on the specimen's free sur-

face. Alternatively, the CTD criterion may be evaluated by comparing CTDcrit to an average CTD

value calculated for multiple CTD points. Because CTDcrit is known to depend on 3D constraint

at any point along a crack front, using a single CTDcrit to predict the advance of an entire crack

front might not be valid for all cases. A more rigorous and computationally expensive evaluation

technique would be to compare CTD at each CTD point to a constraint-dependent CTDcrit. While

some work has been done to resolve a relationship between 3D constraint and CTDcrit [20, 50], a

constraint-dependent fracture criterion is not evaluated in the simulations described in this work.

B. Material State Mapping Algorithm

Following crack growth and remeshing, state variables are mapped from the previous mesh to

the current mesh using an inverse isoparametric mapping routine, as in [51]. Here, the scripts (n)

and (n+1) generically denote previous and current increments of crack growth, respectively. Lim et

al. described the inverse isoparametric mapping technique for 2D elastic-plastic fracture simulations

[52]. Implementation of the mapping algorithm consists of two high-level steps: (1) in the (n) mesh,

22

state variables stored at integration points are extrapolated to nodes using element shape functions

and (2) displacements and state variables are transferred to either nodes or integration points in

the (n+ 1) mesh. The second step involves �nding, for each point in the (n+ 1) mesh, the natural

coordinates (ξ, η) of that point with respect to the element from the undeformed (n) mesh in which

that point would spatially reside. The inverse problem becomes �nding the natural coordinates

(ξ, η) that satisfy the known global coordinates:

X(n+1) = ΣNi(ξ, η)X
(n)
i , (5)

where the subscript i ranges from one to the number of element nodes, X(n) are global nodal

coordinates in the (n) mesh, X(n+1) are point or nodal coordinates in the (n+ 1) mesh, and N are

element shape functions evaluated at (ξ, η). Once (ξ, η) are known, nodal displacements and state

variables, U , can be transferred from the (n) mesh to the (n+ 1) mesh in a forward manner, again

using the element shape functions, N :

U (n+1) = ΣNi(ξ, η)U
(n)
i . (6)

Two levels of mapping are incorporated into the extended FRANC3D\NG and ABAQUS R⃝

software framework. First, displacements are mapped onto the undeformed mesh following crack

growth and remeshing. Second, a mapping function available in ABAQUS R⃝ is invoked to map the

remaining state variables (e.g. stress, strain, plastic strain) onto the deformed mesh. When mapping

material state between successive cracked con�gurations, it is critical that mesh re�nement in regions

of high gradients (e.g. near crack fronts) is su�cient to minimize solution di�usion, which occurs as

a result of extrapolation, interpolation, and nodal averaging (if employed). This e�ect can become

compounded as the crack growth simulation continues. After growing the crack and remeshing,

the updated mesh model contains additional surface area due to crack extension, and equilibrium

must be re-established before additional load is applied. During the equilibration procedure, global

boundaries are held �xed and the new, traction-free crack surfaces are allowed to displace in response

to surrounding �elds, as shown in Fig. 10.

23

Fig. 10 Qualitative comparison of deformation and equivalent plastic strain �eld after mapping
and subsequent equilibration. Images show face of 3D mesh. Deformation is not scaled.

C. Validation Simulations

Two stable tearing experiments are simulated to validate the EPFM framework for predicting

crack growth and residual strength of relatively thin metallic structures. To illustrate the necessity

of using an EPFM framework for predicting crack propagation and residual strength in such cases,

the experiments are also simulated using an LEFM-based methodology. In the LEFM simulations,

the material is modeled as linear-elastic, and crack growth is assumed to occur when an average value

of KI (and KII for mixed-mode crack growth) along a crack front approximately equals fracture

toughness of the material for any increment of crack length.

1. Arcan Specimen

A (modi�ed) mixed-mode I/II Arcan fracture test [53] is simulated. Experimental details and

results were provided in [54] and [55]. Drawings of the fracture specimen and modi�ed load �xture

are shown in Fig. 11. Curvilinear crack growth was induced in an AA 2024-T3 fracture specimen

by applying monotonic load at a 30◦ angle relative to the fatigue precrack plane, as depicted in Fig.

11.

The FE model of the load �xture and fracture specimen is constructed using ABAQUS R⃝ and is

24

Fig. 11 Schematic of Arcan test �xture (left) and 2.3 mm thick fracture specimen (right).
Load, P , can be applied at di�erent pinholes in the �xture to induce mode I/II crack growth
in the specimen. Drawings not to scale. All length dimensions in mm.

depicted in Fig. 12. The FE model contains an initial crack of length 6.35 mm and does not simulate

the fatigue precracking process. A mesh re�nement study is �rst conducted by simulating a pure

mode I Arcan test (0◦ loading angle). Results from the study reveal that, for the initial crack, the

applied load at CTDcrit varies by less than 0.25% when the element length nearest the crack front is

0.33 mm or smaller. This converged level of mesh re�nement is used for the mixed-mode Arcan model

presented here (30◦ loading angle). The specimen and �xture are assumed to be perfectly bonded

such that coincident nodes are merged at the specimen-�xture interface. The �xture is modeled using

6000 C3D10 elements and remains unchanged throughout the simulation. The fracture specimen

sub-region is subject to geometry and mesh updating within FRANC3D\NG. Depending on the

crack length, the specimen comprises between 9000 and 25,000 quadratic elements, which include

a standard rosette of C3D15, C3D20, and pyramid (collapsed C3D20) elements surrounding the

crack front (see [42] for details). The bulk of the sub-region mesh comprises C3D10 elements.

Material properties for the 15-5PH stainless steel �xture are E = 207 GPa and ν = 0.3. The

�xture is assumed to remain elastic during loading. Material properties for the AA 2024-T3 fracture

specimen are E = 71.4 GPa, ν = 0.33, and σy = 345 MPa. The strain hardening curve for the

specimen is provided in Fig. 13. A von Mises yield criterion with isotropic hardening is assumed.

For the LEFM simulation, the specimen is modeled as linear-elastic with KIc = 37 MPa
√
m for

AA 2024-T3 in the LT orientation [56].

Crack growth occurs in the LEFM simulation when the average (KI ,KII) along the crack front

25

Fig. 12 3D FE model of modi�ed Arcan test set-up, including load �xture and fracture spec-
imen. Line traction, P , is applied at 30◦ from mode I axis (y-axis).

Fig. 13 Strain hardening curve determined from uniaxial tension tests for AA 2024-T3 in LT
orientation. Courtesy NASA Langley Research Center. Similar curves were used in [22] and
[23].

reaches a critical combination. The critical combination is determined using the mixed-mode failure

envelope described in II B, where KIIc is taken to be 10% less than KIc.

In the EPFM simulation, important observations from a number of studies inform the selection

of CTDcrit and d used to predict crack growth. First, from [6, 54, 55], for 2.3 mm thick AA 2024-T3

specimens precracked in the L-T orientation, an average constant critical value of CTDcrit= 0.1 mm

was observed, where CTD was measured on the specimen face at d = 1 mm. This critical value was

observed for a range of specimens exhibiting mode I dominant crack growth, which includes the 30◦

Arcan test [54, 55]. Scatter among the measurements was typically ±0.02 mm. Second, signi�cant

crack front tunneling was observed in the fracture specimens, especially during initial crack extension

[6]. Third, a recent study by Lan et al. suggested that modeling tunneled cracks using straight crack

26

fronts can lead to over-estimation of load versus crack extension predictions [50]. This is because

higher levels of constraint along a crack front, which can induce crack tunneling, e�ectively decrease

fracture toughness. Lan et al. noted that surface-measured CTD values can be 24% larger for cases

with crack tunneling than cases without. In the Arcan simulation, crack front tunneling and slant

crack growth are not modeled. Thus, using the surface-measured value of CTDcrit= 0.1 mm from

[6, 54, 55] as the crack growth criterion in the Arcan simulation, an over-prediction of load versus

crack extension is expected. Assuming that the over-prediction is proportional to the di�erence in

surface-measured CTDcrit values between straight and tunneled crack fronts, CTDcrit is taken to be

0.08 mm, which is≈ 24% less than the observed average surface-measured value of CTDcrit= 0.1mm

and also corresponds to the lower bound of experimental scatter. This adjusted critical value used

in simulation should account for some expected over-prediction of residual strength.

Simulated crack growth occurs in increments of approximately 1 mm, which satis�es convergence

results from similar simulations [22]. Propagation direction is predicted according to the maximum

tangential stress theory [16], though a 2D CTD-based directional criterion [19] could also be used.

Simulation proceeds by applying displacement in the direction indicated in Fig. 12, which cor-

responds to a 30◦ loading angle. In the EPFM simulation, after each increment of, inclusively,

crack growth, remeshing, and material state mapping (see subsection III B), all nodes with applied

boundary conditions are held �xed while the model is brought into equilibrium. Then, additional

displacement is applied, and the simulation continues until maximum load, or residual strength, is

attained.

Applied load versus crack extension is plotted in Fig. 14 from the Arcan experiment and sim-

ulation. Both LEFM and EPFM simulation results are plotted. Compared to experiment, residual

strength is 6.8% higher using the EPFM framework and 10.8% lower using the LEFM method.

In the LEFM simulation, maximum load occurs at the �rst increment of crack growth; whereas,

maximum load occurs in the EPFM simulation after a small amount of crack growth, consistent

with experiment. The load to initiate crack extension is approximately the same in both EPFM and

LEFM simulations since there are no residual stresses in the model at da=0. However, unlike the

LEFM simulation, the EPFM simulation is able to capture the shape of the load versus crack exten-

27

sion curve. In other words, including plasticity e�ects in the model requires an increase in applied

load, initially, to drive crack extension before reaching the residual strength of the specimen.

Although the EPFM framework captures the shape of the load versus crack extension curve, it

slightly over-predicts the maximum load. The over-prediction is likely related to modeling the crack

front, which tunnels or thumbnails in reality, as remaining straight throughout the simulation. Given

a constraint-dependent CTDcrit, curvature along the crack front could be predicted using a point-

by-point evaluation technique, in which case it is suspected that the load versus crack extension

curve would be predicted even more accurately. Another potential contribution to the discrepancy

is the numerical tolerance for satisfying CTDcrit, which in this case is set at 2%.

Fig. 14 Applied load versus crack extension, da, from the 30◦ Arcan experiment and sim-
ulations. Insets show snapshots of deformed mesh at various crack increments. Complete
simulation can be viewed at www.cfg.cornell.edu

Figure 15 shows the simulated and experimental curvilinear crack trajectory as viewed from

the specimen free surface. There is a slight deviation in the actual crack trajectory during the

�rst 6.35 mm of crack length due to fatigue precracking processes, which are not modeled in the

simulation. Rather, the fatigue precrack is simply modeled as a perfectly planar initial crack in the

simulation. The deviation appears to have little e�ect on the predicted crack path thereafter.

28

Fig. 15 Comparison of experimental and simulated curvilinear crack paths in the 30◦ Arcan
fracture test. Inset shows reference coordinate system.

2. Integrally-sti�ened Panel

A stable tearing test of an ISP machined from a lower wing-skin aluminum alloy, C433-T39, is

also simulated. The test was conducted at Alcoa Technical Center. Test details, data, and results

were overviewed in [57] and have also been provided to the authors by Alcoa Technical Center.

Relevant details are described next, and additional details from the test program can be found in

the Appendix.

Dimensions of the panel are shown in Fig. 16(a). An initial two-bay saw cut of length ≈ 2.54 cm

was made at mid-height to completely sever the middle sti�ener. The initial cut was then propagated

under fatigue loading until both crack fronts were 2.54 cm short of reaching the intact sti�eners

(2a ≈ 24.1 cm). The panel was then loaded monotonically in uniaxial tension until failure occurred

by unstable crack growth. Crack front branching was observed, where an initial crack propagating

toward an intact sti�ener eventually split into two distinct cracks, one continuing into the adjacent

bay and one propagating in the z direction within the sti�ener. Photographs of the test panel with

views of crack branching are provided in Fig. 17.

A 3D FE model of the entire panel is constructed using ABAQUS R⃝ [1]. The FE model contains

an initial crack of total length 24.1 cm, which corresponds to the fatigue crack length just prior to

conducting the residual strength test. The FE model with initial crack is shown in Fig. 16(b). The

mesh region that remains unchanged throughout the tearing simulation is modeled using 56 C3D15

and 9,400 C3D20R elements. A 38.5 x 12.7 cm2 sub-region centered in the panel is subject to

geometry and mesh updating within FRANC3D\NG. Depending on crack length, the sub-region

29

comprises between 27,000 and 95,000 quadratic elements, including a bulk of C3D10 elements and

a standard rosette of C3D15, C3D20, and pyramid (collapsed C3D20) elements surrounding the

crack front (see [42] for details). The mesh interface between the sub- and global regions is coherent,

obviating the enforcement of a constraint.

Fig. 16 (a) Schematic (not to scale) from [57] showing dimensions of symmetric ISP tested at
Alcoa Technical Center. Isoparametric view of full panel indicates �nal fatigue crack length
2ai, and cross-section view in plane of the crack shows where sti�ener is completely severed.
All dimensions are in cm. (b) Corresponding 3D FE model of ISP. Initial crack severs middle
sti�ener. Traction, P , is applied uniaxially in the y direction.

Mesh re�nement near each crack front is dictated, to some extent, by crack front location with

respect to sti�ener. As the crack initially propagates through the skin, element lengths nearest

both crack fronts are 0.5 mm. When the crack fronts are within 1.5 mm of the 90◦ skin-sti�ener

junctions, however, near-crack front elements must decrease in size. This is because the rosette

30

Fig. 17 Photographs of ISP with central two-bay crack from the Alcoa test program [57]. Full
panel in load frame (left) and angled views of crack front branching into sti�ener (top right)
then exiting the sti�ener (bottom right).

template of elements surrounding either crack front consists of three rings of equi-length elements.

In order to accommodate (i.e. facilitate remeshing) a full rosette of elements within the proximity

of the discontinuous geometry, the size of the template elements must decrease.

The thickened grip ends of the panel are modeled as linear-elastic with an elastic modulus

approximately �ve times greater than that of C433-T39. The rest of the panel is assigned C433-T39

material properties: E = 71.4 GPa, ν = 0.3, and σy = 455 MPa [58]. The strain hardening curve

used for C433-T39 is provided in Fig. 18. A von Mises yield criterion with isotropic hardening is

assumed. For the LEFM simulation, the panel is modeled as linear-elastic with KIc = 50 MPa
√
m

for C433-T39 [58].

Fig. 18 Strain hardening curve determined from uniaxial tension tests for C433-T39 in LT
orientation [57].

Boundary conditions are applied to simulate actual loading in the panel. Nodes on the bottom

face of the lower grip end are �xed in the y direction. Displacement is applied in the y direction at

31

nodes on the top face of the upper grip end. Additionally, nodes along the same top and bottom

grip end faces are �xed in the x and z directions. For the EPFM simulation, after each increment

of, inclusively, crack growth, remeshing, and material state mapping (see subsection III B), all

nodes with applied boundary conditions are held �xed while the model is brought into equilibrium

before applying additional displacement. Additionally, based on preliminary simulation results, the

entire back (zmin) face is arti�cially �xed after mapping and during the equilibration procedure.

This is because resonance in the z direction is observed with increased crack growth otherwise.

The resonance occurs when mapped tensile and compressive stresses in the faces of the panel are

arti�cially reversed during equilibration of the mapped solution. The additional boundary condition

is, however, removed after the equilibration procedure so that z displacement is allowed during the

subsequent loading step.

Crack growth occurs in the LEFM simulation when the average KI value along either crack

front reaches KIc. A mixed-mode failure criterion is unnecessary, as KII and KIII are negligible

(i.e. <2.5% of KI for all crack growth increments).

For the EPFM simulation, CTDcrit was calibrated at NASA Langley Research Center from a

middle-crack tension (MT) test of the same material (C433-T39) and thickness as the ISP [59]. In

that work, 3D FE simulations of the MT test revealed that simulated load versus crack extension

matched experimental data when the mode I opening angle midway along the crack front at d =

1.02 mm reached a critical value of 6.5◦. This angle corresponds to CTDcrit through the relation

tan(6.5◦) =
CTDcrit

1.02
. (7)

The same criterion is applied in the EPFM simulation by specifying for both crack fronts that

CTDcrit must attain a value of 0.116 mm at d = 1.02 mm behind the crack front and that the

criterion be evaluated midway along either crack front.

Crack growth occurs in increments of 1.15 mm (about 15% of the skin thickness), which is

selected to be approximately the same as that implemented by Seshadri et al. in a similar simulation

[59]. Straight crack fronts are enforced during crack growth in the skin of ISP. Upon entering the

32

intact sti�ener, a crack front is evolved such that (1) a realistic, arbitrary crack front pro�le is

represented (though the actual evolving crack front pro�le was not monitored during experiment)

and (2) the new crack front pro�le has relatively smooth curvature to facilitate remeshing. A cross-

section view of the panel in Fig. 19 shows di�erent stages of simulated crack front evolution, from

lead crack growth in the skin, to transition crack growth within the sti�ener, to complete branching.

The simulation proceeds as depicted in Fig. 8 until both initial crack fronts completely branch and

Pmax is attained.

Fig. 19 Cross-sectional views of ISP mesh model taken at the crack plane and magni�ed at
one sti�ener. A thickened red line is overlaid along the crack front(s) at each step of crack
growth. Views show lead bay crack before entering sti�ener(a); transition crack evolution
within sti�ener (b,c,d); and complete branching into two distinct crack fronts (e,f).

Evaluation of the CTD criterion becomes nontrivial as a crack front transitions within the sti�-

ener (i.e. while a crack front is within the sti�ener but has not completely branched). Constraint

e�ects introduced by the sti�ener on the unsymmetric crack front pro�le, along with slight z dis-

placement near the cracked region, lead to nonuniform and unsymmetric CTD values along the

crack front. Evaluating the CTD criterion at only one point along the crack front becomes ambigu-

ous to implement numerically and less representative, physically, of 3D crack growth behavior. A

simple and e�cient approach to address these issues is to compare CTDcrit to an average of CTD

33

values along the crack front. For transition crack growth in the sti�ener, the middle third section of

CTD points along the crack front are averaged and evaluated to predict crack propagation. Once

the crack fully branches, the CTD criterion is again evaluated midway along each crack front.

Predicting crack front evolution for transition crack growth within the sti�ener is not currently

a fully-automated process. In this work, the straight portion of the crack front (see Fig. 19) is

predicted using FRANC3D\NG and the curved portion of the front is speci�ed by manually adding

crack front points according to the two considerations described in the previous paragraph. Given a

constraint-dependent CTDcrit relationship, a point-wise CTD criterion could be evaluated to evolve

the arbitrarily-shaped crack front automatically.

The consequence of using an LEFM versus EPFM simulation to determine residual strength is

quite obvious in the ISP case. Figure 20 shows load versus crack extension for both LEFM and EPFM

simulations. Experimental load versus crack extension was not recorded during the tests; however,

maximum applied load is plotted for two ISP tests of the same material and loading conditions. As

in the Arcan simulation, the load to initiate crack extension is similar using either EPFM or LEFM

methods since there are no residual stresses in the model at da=0. Following initiation, however, the

EPFM simulation predicts that the applied load must be increased to maintain crack propagation.

The necessary increase in applied load occurs since a signi�cant amount of energy in the system is

dissipated through plastic deformation. This e�ect cannot be predicted by the LEFM simulation

since plasticity e�ects are not modeled. As a result, much of the energy in the ISP for the LEFM

simulation must be dissipated through creation of new fracture surface area, which means less load

is required to drive crack growth in the LEFM simulation than in the EPFM simulation. Using the

EPFM framework, residual strength is determined within 2% of experimental average of the two

tests. On the other hand, the LEFM method underpredicts the average residual strength by 64%.

Although the LEFM simulation does predict an increase in applied load at the sti�ener junction

due to geometrical e�ects, the increase is negligible compared to that due to plastic deformation.

From the EPFM simulation, equivalent plastic strain �eld evolution in the ISP is depicted

in Fig. 21 for the �rst and �nal crack steps. Accumulation of plastic strain in the wakes of the

advancing crack fronts is relatively signi�cant, extending from initial to �nal crack front locations.

34

Fig. 20 Applied load (traction P , Fig. 16(b), integrated over applied area) versus half-crack
extension, da, from ISP simulation. Maximum applied load is indicated for two corresponding
tests conducted at Alcoa Technical Center. Shaded region indicates initially intact sti�ener.

The general shape of 45◦ contour lobes at da=0 mm is maintained at da=44 mm both for the lead

crack front extending into adjacent bay and for the crack front propagating in the z direction within

the sti�ener. At da=44 mm, the equivalent plastic strain in each sti�ener extends in the direction

of both contour lobes to the sti�ener boundary. The consistent contour lobe shapes indicate that,

despite increased z displacement as the crack propagates and severs initially intact sti�eners, both

lead and branched crack fronts remain locally mode I dominant throughout tearing.

Finally, as evident in Fig. 21 for da=44 mm, the mapping procedure inevitably leads to imper-

fections in the �elds due to di�usion of the FE solution, which occurs in regions of high gradients

from repeated extrapolation and interpolation procedures, see III B. If mapping errors signi�cantly

a�ect crack growth predictions, mesh re�nement should mitigate this e�ect.

IV. Conclusions

A surrogate model methodology and 3D elastic-plastic fracture simulation toolset have been

presented, which enable accurate residual strength prediction of damaged structures in real time.

The methodology and toolset are particularly useful for scenarios involving metallic aircraft struc-

tures subject to discrete-source damage during �ight. An accurate prediction of structural residual

strength in these scenarios could aid in avoidance of catastrophic crack growth and subsequent

35

Fig. 21 Magni�ed views of simulated crack growth in ISP at half-crack extensions da=0 mm
(top) and da=44 mm (bottom). Contours show evolution of equivalent plastic strain �elds
with crack growth. Deformation is not scaled. FE mesh is not shown for better contour
visualization. Complete simulation can be viewed at www.cfg.cornell.edu.

structural failure.

The surrogate model methodology relies on o�ine numerical fracture simulations to obtain a

set of data points describing residual strength as a function of discrete-source damage parameters.

Strictly for illustration, a NN has been constructed as a surrogate model for predicting residual

strength of a representative wing sub-structure subject to discrete-source damage. In the illustra-

tion, o�ine residual strength values have been determined using computationally e�cient LEFM

approximations. Subsequently, the consequences of using LEFM approximations for determining

36

residual strength of damaged metallic structures have been shown, and an EPFM framework to

accurately determine residual strength using high-�delity, 3D, elastic-plastic tearing simulations has

been described. For an aluminum-alloy, integrally-sti�ened panel exhibiting crack branching, resid-

ual strength is predicted within 2% of experiment using an EPFM simulation and is underpredicted

by 64% using an LEFM simulation.

The more general and rigorous elastic-plastic tearing framework should be used to generate ac-

curate residual strength training data, especially for cases involving discrete-source damage. Also,

the FE model for the structure of interest should include enough detail to fully capture the rela-

tionship between a particular global loading state and onset of unstable crack growth. Furthermore,

damage should be parameterized by taking into account onboard sensor characterization capability

and resolution. With these considerations in mind, the general surrogate model methodology cou-

pled with the EPFM simulation framework presented in this work provides a means of achieving

more resilient and adaptive aircraft control.

V. Acknowledgments

The authors express gratitude to Drs. Robert Bucci and Mark James of Alcoa for providing valu-

able discussions and experimental details from the integrally-sti�ened panel test program. Thank

you also to Dr. Wilkins Aquino for providing guidance in the surrogate modeling aspect of this work.

Funding was provided by NASA under contract NNX08AC50A with technical oversight provided

by Drs. Edward Glaessgen and Thiagarajan Krishnamurthy of NASA Langley Research Center.

VI. References

[1] ABAQUS 6.8 Documentation, Dassault Systèmes Simulia Corp., 2008.

[2] Hughes, D. and Dornheim, M., �No Flight Controls,� Aviation Week & Space Technology , Vol. 159,

No. 23, 2003, pp. 42 � 43.

[3] �Depressurisation - 475 km north-west of Manila, Philippines - 25 July 2008,� ATSB Transportation

Safety Report 2, Australian Transport Safety Bureau, Nov 2009.

[4] Ingra�ea, A., Computational Fracture Mechanics, Vol. 2 of Encyclopedia of Computational Methods in

Mechanics, John Wiley and Sons, 2nd ed., 2007.

37

[5] Newman, J.C., Jr., �Finite-element analysis of crack growth under monotonic and cyclic loading,� ASTM

STP 637 , 1977, pp. 56�80.

[6] Dawicke, D., Sutton, M., Newman, J.C., Jr., and Bigelow, C., �Measurement and analysis of critical

CTOA for an aluminum alloy sheet,� ASTM STP 1220 , 1995.

[7] Deng, X. and Newman, J. C., �A study of some issues in stable tearing crack growth simulations,�

Engineering Fracture Mechanics, Vol. 64, No. 3, 1999, pp. 291 � 304.

[8] Seshadri, B., Newman, J.C., Jr., Dawicke, D., and Young, R., �Fracture analysis of the FAA/NASA

wide sti�ened panels,� Tech. Rep. 208982, NASACP, 1999.

[9] Sutton, M. A., Boone, M. L., Ma, F., and Helm, J. D., �A combined modeling-experimental study

of the crack opening displacement fracture criterion for characterization of stable crack growth under

mixed mode I/II loading in thin sheet materials,� Engineering Fracture Mechanics, Vol. 66, No. 2,

2000, pp. 171 � 185.

[10] Chen, C., Ingra�ea, A., and Wawrzynek, P., �Prediction of Residual Strength and Curvilinear Crack

Growth in Aircraft Fuselages,� AIAA Journal , Vol. 40, aug 2002, pp. 1644�1652.

[11] Newman, J. C., Dawicke, D. S., and Seshadri, B. R., �Residual strength analyses of sti�ened and un-

sti�ened panels�Part I: laboratory specimens,� Engineering Fracture Mechanics, Vol. 70, No. 3-4, 2003,

pp. 493 � 507.

[12] Seshadri, B. R., Newman, J. C., and Dawicke, D. S., �Residual strength analyses of sti�ened and

unsti�ened panels�Part II: wide panels,� Engineering Fracture Mechanics, Vol. 70, No. 3-4, 2003,

pp. 509 � 524.

[13] Dawicke, D., Newman, J.C., Jr., and Bigelow, C., �Three-dimensional CTOA and constraint e�ects

during stable tearing in a thin-sheet material,� ASTM STP 1256 , 1995, pp. 358�379.

[14] Gullerud, A., Dodds, R.H., Jr., Hampton, R., and Dawicke, D., �Three-dimensional modeling of duc-

tile crack growth in thin sheet metals: computational aspects and validation,� Engineering Fracture

Mechanics, Vol. 63, No. 4, 1999, pp. 347 � 374.

[15] Seshadri, B., Forth, S., Johnston, W.M., Jr., and Domack, M., �Application of CTOA/CTOD in

the residual strength analysis of built-up and integral structures,� 11th International Conference on

Fracture, Turin, Italy, March 2005.

[16] Erdogan, F. and Sih, G., �On the crack extension of plates under plane loading and transverse shear,�

Journal of Basic Engineering , Vol. 85, No. 4, 1963, pp. 519�527.

[17] Hussain, M., Pu, S., and Underwood, J., �Strain energy release rate for a crack under combined mode

I and mode II,� ASTM STP 560 , 1974.

38

[18] Sih, G., �Strain-energy-density factor applied to mixed-mode crack problems,� International Journal of

Fracture, , No. 10, 1974, pp. 305�321.

[19] Sutton, M., Deng, X., Ma, F., Newman, J.C., Jr., and James, M., �Development and application of a

crack tip opening displacement-based mixed mode fracture criterion,� International Journal of Solids

and Structures, Vol. 37, No. 26, 2000, pp. 3591 � 3618.

[20] Zuo, J., Deng, X., Sutton, M. A., and Cheng, C.-S., �Three-Dimensional Crack Growth in Ductile

Materials: E�ect of Stress Constraint on Crack Tunneling,� Journal of Pressure Vessel Technology,

Vol. 130, No. 3, 2008, pp. 031401.

[21] James, M. and Swenson, D., �A software framework for two-dimensional mixed mode I/II elastic-plastic

fracture,� ASTM STP 1359 , 1999.

[22] Lan, W., Deng, X., and Sutton, M. A., �Three-dimensional �nite element simulations of mixed-mode

stable tearing crack growth experiments,� Engineering Fracture Mechanics, Vol. 74, No. 16, 2007,

pp. 2498 � 2517.

[23] Zuo, J., Deng, X., and Sutton, M. A., �Computational Aspects of Three-Dimensional Crack Growth

Simulations,� ASME Conference Proceedings, Vol. 2004, No. 47020, 2004, pp. 385�391.

[24] Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., and Tucker, P. K., �Surrogate-based

analysis and optimization,� Progress in Aerospace Sciences, Vol. 41, No. 1, 2005, pp. 1 � 28.

[25] Reed, R. D. and Marks, R. J., Neural Smithing: Supervised Learning in Feedforward Arti�cial Neural

Networks, MIT Press, Cambridge, MA, USA, 1998.

[26] Kudva, J., Munir, N., and Tan, P., �Damage detection in smart structures using neural networks and

�nite-element analyses,� Smart Materials and Structures, Vol. 1, No. 2, 1992.

[27] Ceravolo, R., Stefano, A. D., and Sabia, D., �Hierarchical use of neural techniques in structural damage

recognition,� Smart Materials and Structures, Vol. 4, No. 4, 1995, pp. 270�280.

[28] Liang, Y. C. and Hwu, C., �On-line identi�cation of holes/cracks in composite structures,� Smart

Materials and Structures, Vol. 10, No. 4, 2001, pp. 599�609.

[29] Liu, S. W., Huang, J. H., Sung, J. C., and Lee, C. C., �Detection of cracks using neural networks and

computational mechanics,� Computer Methods in Applied Mechanics and Engineering , Vol. 191, No.

25-26, 2002, pp. 2831 � 2845.

[30] Ni, Y. Q., Wang, B. S., and Ko, J. M., �Constructing input vectors to neural networks for structural

damage identi�cation,� Smart Materials and Structures, Vol. 11, No. 6, 2002, pp. 825�833.

[31] Lu, Y., Ye, L., Su, Z., Zhou, L., and Cheng, L., �Arti�cial Neural Network (ANN)-based Crack Iden-

ti�cation in Aluminum Plates with Lamb Wave Signals,� Journal of Intelligent Material Systems and

39

Structures, Vol. 20, No. 1, 2009, pp. 39�49.

[32] Su, Z. and Ye, L., Application of Algorithms for Identifying Structural Damage - Case Studies, Vol. 48

of Lecture Notes in Applied and Computational Mechanics, Springer Berlin / Heidelberg, 2009.

[33] Ouenes, A., �Practical application of fuzzy logic and neural networks to fractured reservoir characteri-

zation,� Computers & Geosciences, Vol. 26, No. 8, 2000, pp. 953 � 962.

[34] Pidaparti, R., Jayanti, S., and Palakal, M., �Residual Strength and Corrosion Rate Predictions of Aging

Aircraft Panels: Neural Network Study,� Journal of Aircraft , Vol. 39, No. 1, 2002, pp. 175 � 180.

[35] Mohanty, S., Chattopadhyay, A., Peralta, P., and Das, S., �Bayesian Statistic Based Multivariate Gaus-

sian Process Approach for O�ine/Online Fatigue Crack Growth Prediction,� Experimental Mechanics,

2010, pp. 1�11.

[36] Hambli, R., Chamekh, A., and H. Bel Hadj Salah, �Real-time deformation of structure using �nite

element and neural networks in virtual reality applications,� Finite Elements in Analysis and Design,

Vol. 42, No. 11, 2006, pp. 985 � 991.

[37] Sankararaman, S., Ling, Y., and Mahadevan, S., �Statistical inference of equivalent initial �aw size with

complicated structural geometry and multi-axial variable amplitude loading,� International Journal of

Fatigue, Vol. 32, No. 10, 2010, pp. 1689 � 1700.

[38] Hinrichsen, R., Kurtz, A., Wang, J., Belcastro, C., and Parks, J., �Modeling Projectile Damage in

Transport Aircraft Wing Structures,� AIAA Journal , Vol. 46, Feb. 2008, pp. 328�335.

[39] Ramachandran, V., Raghuram, A., Krishnan, R., and Bhaumik, S., Failure Analysis of Engineering

Structures: Methodology and Case Histories, chap. 6, ASM International, Materials Park, OH 44073-

0002, 2005, p. 45.

[40] Mckay, M. D., Beckman, R. J., and Conover, W. J., �A Comparison of Three Methods for Selecting

Values of Input Variables in the Analysis of Output from a Computer Code,� Technometrics, Vol. 42,

No. 1, 2000, pp. 55�61.

[41] MATLAB R2009a Documentation, The MathWorks, Inc., 2009.

[42] Wawrzynek, P., Carter, B., and Ingra�ea, A., �Advances in simulation of arbitrary 3D crack growth

using FRANC3D/NG,� 12th International Conference on Fracture, Ottawa, Canada, July 2009.

[43] Broek, D., Elementary Engineering Fracture Mechanics, chap. 14, Martinus Nijho� Publishers, 4th ed.,

1986.

[44] Demuth, H. and Beale, M., Neural Network Toolbox For Use with MATLAB (Version 4), The Math-

Works, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, 2004.

[45] Hagan, M. and Menhaj, M., �Training feedforward networks with the Marquardt algorithm,� IEEE

40

Transactions on Neural Networks, Vol. 5, No. 6, Nov. 1994, pp. 989 �993.

[46] Hamby, D. M., �A review of techniques for parameter sensitivity analysis of environmental models,�

Environmental Monitoring and Assessment , Vol. 32, 1994, pp. 135�154, 10.1007/BF00547132.

[47] Spear, A., Veilleux, M., Bozek, J., and Ingra�ea, A., �Structural Assessment and Prognosis Using a

Multi-scale, Fracture Mechanics-based Approach,� Austin, TX, May 2010.

[48] Newman, J. C., James, M. A., and Zerbst, U., �A review of the CTOA/CTOD fracture criterion,�

Engineering Fracture Mechanics, Vol. 70, No. 3-4, 2003, pp. 371 � 385.

[49] Sutton, M., Yan, J., Deng, X., Cheng, C., and Zavattieri, P., �Three-dimensional digital image correla-

tion to quantify deformation and crack-opening displacement in ductile aluminum under mixed-mode

I/III loading,� Optical Engineering , Vol. 46, No. 5, 2007, pp. 051003.

[50] Lan, W., Deng, X., and Sutton, M. A., �Investigation of Crack Tunneling in Ductile Materials,� Engi-

neering Fracture Mechanics, Vol. In Press, Accepted Manuscript, 2010, pp. �.

[51] James, M., A plane stress �nite element model for elastic-plastic mode I/II crack growth, Ph.D. thesis,

Kansas State University, 1998.

[52] Lim, I., Johnston, I., Choi, S., and Murti, V., �An improved numerical inverse isoparametric mapping

technique for 2D mesh rezoning,� Engineering Fracture Mechanics, Vol. 41, No. 3, 1992, pp. 417 � 435.

[53] Arcan, M., Hashin, Z., and Voloshin, A., �A Method to Produce Uniform Plane-stress States with

Applications to Fiber-reinforced Materials,� Experimental Mechanics, , No. 141, 1977.

[54] Amstutz, B., Sutton, M., Dawicke, D., and Newman, J.C., Jr., �An experimental study of CTOD for

mode I/mode II stable crack growth in thin 2024-T3 aluminum specimens,� ASTM STP 1256 , 1995,

pp. 256�271.

[55] Amstutz, B., Sutton, M., Dawicke, D., and Boone, M., �E�ects of mixed mode I/II loading and grain

orientation on crack initiation and stable tearing in 2024-T3 aluminum,� ASTM STP 1296 , 1997,

pp. 105�125.

[56] NASGRO Material Database, Southwest Research Institute R⃝.

[57] Kulak, M., Bucci, R., Skyut, H., Bray, G., and Newman, J.C., Jr., �Fatigue crack growth and residual

strength analysis of TWIST spectrum loaded integrally sti�ened panels simulating a lower wing skin

two bay crack scenario,� ICAF 20, 1999 - Structural Integrity for the Next Millenium, edited by J. Rudd

and R. Bader, Vol. I, International Committee on Aeronautical Fatigue, EMAS Publishing, Bellevue,

Washington, USA, July 1999.

[58] Bray, G., Bucci, R., and Brazill, R., �Lessons Neglected: E�ects of Moist Air on Fatigue and Fatigue

Crack Growth in Aluminum Alloys,� 7th International Conference on Aluminum Alloys, Charlottesville,

41

VA, 2000.

[59] Seshadri, B., James, M., Johnston, W.M., Jr., Young, R., and Newman, J.C., Jr., �Recent developments

in the analysis of monolithic structures at NASA Langley,� Sixth Joint FAA/DoD/NASA Conference

on Aging Aircraft , San Francisco, CA, 2002.

[60] de Jonge, J., Schutz, D., Lowak, H., and Schijve, J., �A standardized load sequence for �ight simulation

tests on transport aircraft wing structures,� NLR Technical Report TR 73029 U, National Aerospace

Laboratory NLR, Amsterdam, The Netherlands, 1973.

VII. Appendix

A. Python R⃝ Script to Evaluate CTD Criterion During Nonlinear Finite Element Analysis

Using ABAQUS R⃝

The script CTDjobControlTerminal.py executes an FE analysis using ABAQUS R⃝ and period-

ically interrupts the analysis to compute CTD values along one or multiple crack fronts and to

subsequently evaluate a user-speci�ed CTDcrit criterion. If CTDcrit is satis�ed within the given

tolerance, the script will terminate the FE analysis and echo to the command window the load

increment when the criterion is satis�ed. If there are multiple cracks in the model, the critical

crack front will be identi�ed and echoed to the command window. The script will also print the

�le CTDResults.txt to the current working directory. The �le includes CTD values (decoupled into

three modes) at each point along each crack front for every FE analysis interruption. The script

includes function calls to the object libraries MeshTools and Vec3D, which are not included here.

However, the functionality of each routine should be somewhat clear from the name of the function

and comments in the script.

For the �rst step of crack growth, assuming the initial state is undeformed, CTDjobControl.py

should be located in a current working directory and should be executed from the MS-DOS command

window using a command like: �...>abaqus python CTDjobControl.py�. The user will then be

prompted for a series of input. Successful execution requires that the following �les be located in the

current working directory along with the script: (1) *.fdb (generated by FRANC3D\NG following

crack insertion and remeshing) and (2) the deformed *.inp (only the model to be submitted for FE

analysis). Additionally, the undeformed *.inp �le (the undeformed local mesh model in a global-

42

local analysis) should be included in a sub-directory called Undeformed within the current working

directory.

For subsequent steps of crack growth, a similar script, CTDjobControlCall.py, is called auto-

matically following deformation mapping. Unlike CTDjobControl.py, CTDjobControlCall.py does

not require the user to relocate �les or execute a script to start the next FE analysis. While the

two scripts di�er slightly in how they are executed, the main functions are the same. Only CTDjob-

ControlCall.py is included here, and electronic versions of both scripts are available for download

at www.cfg.cornell.edu.

'''

CTDjobControlCall.py

Python script to control ABAQUS nonlinear FEA while

monitoring CTD at points located distance d behind crack.

written by ADS (October, 2009)

modified March, 2010

***if executing manually, use: "...>abaqus python CTDjobControlCall.py --

defInpFilePath undefInpFilePath fdbFilePath oldJobodbPath"***

Otherwsie the script will be executed automatically after mapping

deformation using runMapScript.py

'''

import os, sys, time

from sys import argv, exit

import odbAccess as oa

from abaqusConstants import *

import Vec3D, MeshTools

import math

from math import sqrt

************************** DEFINE HELPER FUNCTIONS *******************************

**

def askForFloat(number):

Request float from user

response = float(raw_input(number))

if response < 0 :

print "Requested value must be positive. Exiting."

exit(0)

else:

return response

**

def askForInt(number):

43

Request int from user

try:

response = int(raw_input(number))

except:

print "Response must be a positive integer!"

exit(0)

if response < 0 :

print "Requested values must be a positive integer. Exiting."

exit(0)

else:

return response

**

def askForPath(prompt,extension):

Request path from user

response = raw_input(prompt)

while not os.path.exists(response):

print "Specified path could not be located."

print "Check that path exists and try again."

response = raw_input(prompt)

while not response.split('.')[-1] == extension:

print "\n**File path should have extension '%s'**" % extension

response = raw_input(prompt)

return response

**

def changeDirectory(pathToFile):

path = str()

tmp = pathToFile.split("/")

for i in range(len(tmp)-1):

path+=tmp[i]

path+="/"

print "\nThe cwd has been changed to: \n\t%s" % path

os.chdir(path)

**

def getFdb(path):

fdb = str()

First try splitting on "."

tmp = path.split(".")

tmp[-1] = '.fdb'

for i in range(len(tmp)):

fdb+=tmp[i]

If doesn't exist, try splitting on "_"

if not os.path.exists(fdb):

fdb = str()

tmp = path.split("_")

tmp[-1] = '.fdb'

for i in range(len(tmp)):

fdb+=tmp[i]

if not os.path.exists(fdb):

print "The file %s cannot be located." % fdb

exit(0)

print "\nGetting %s" % fdb

return fdb

44

**

def askYesNo(question):

Request yes/no response from user

(Returns "Y" or "N")

response = raw_input(question)

while response.upper()[0] not in ("Y","N"):

response = raw_input(question)

if response.upper()[0] not in ("Y","N"):

print "Wrong answer! Try again"

return response.upper()[0]

**

def isInt(value):

Check if value is an integer

try:

int(value)

return True

except:

return False

**

def getGroupList(meshObj,listName,type):

list = meshObj.GetGroupInfo(listName,type)

if len(list) == 0:

print "***No members found in group: %s ***" % listName

return list

**

def sortDictValsByKey(dict):

Returns a list of values sorted by keys

sorted_list = []

keys = dict.keys()

keys.sort()

for i in keys:

sorted_list.append(dict[i])

return sorted_list

**

def printTimeStamp(start_time):

Print time stamp

end_time = time.time()

mins = int((end_time-start_time)/60)

secs = round((end_time-start_time)%60,3)

resultsFile = 'CTDResults.txt'

file = open(resultsFile,"a")

file.write('\n***')

file.write('\nTotal time for run: %i:%g' % (mins,secs))

file.write('\n***')

file.close()

**************** DEFINE JOB/ANALYSIS INTERACTION FUNCTIONS ***********************

**

def runAnalysis(d,CTDc,eval,oldJob,mapSoln,undefInpFile,inpFile,fdbFile):

45

************************* runAnalyis SUB-FUNCTIONS ***************************

def submitJob():

Submits ABAQUS job and suspends it after data written .sta file

print "\nSubmitting ABAQUS job '%s'..." % jobName

if oldJob in "None":

os.system('abaqus job='+jobName)

else:

print "Old job specified"

os.system('abaqus job='+jobName+' oldjob='+oldJob)

while not os.path.isfile(staFile): # Wait for .sta file to be created

continue

A hack at monitoring the sta file...

fileSize = os.path.getsize(staFile)

print fileSize

fileSize_update = fileSize

while fileSize == fileSize_update:

fileSize_update = os.path.getsize(staFile)

else:

print fileSize_update

os.system('abaqus job='+jobName+' suspend')

**

def resumeJob():

Resume ABAQUS job

os.system('abaqus job='+jobName+' resume')

Monitor the sta file

fileSize = os.path.getsize(staFile)

print fileSize

fileSize_update = fileSize

while fileSize == fileSize_update:

fileSize_update = os.path.getsize(staFile)

else:

print fileSize_update

os.system('abaqus job='+jobName+' suspend')

**

def openOdb(jobName):

odbFile = jobName+'.odb'

Try opening the odb file

ct = 1

while ct < 11:

try:

odb=oa.openOdb(path=odbFile,readOnly=TRUE)

print "Opening the odb file..."

return odb

except:

print "ERROR: Unable to open the specified odb %s!" % odbFile

ct+=1

exit(0)

**

def getCurrentStatus():

fd = open(staFile,"r")

lines = fd.readlines()

i = 1

if len(lines[-i].split()) == 0:

46

i+=1

while isInt(lines[-i].split()[0]) == False :

i+=1

while len(lines[-i].split()) == 0:

i+=1

curr_step = int(lines[-i].split()[0])

curr_inc = int(lines[-i].split()[1])

return curr_step, curr_inc

**

def previousIncrement(frac_status_per_front,front,eval,curr_inc,curr_step,\

interesting_nodes,mapped_disp,pts_per_front,\

main_side_elems,mate_side_elems,odbStep):

Evaluate CTD values at successive previous increments

until no values are supercritical.

while frac_status_per_front[front] == 2:

if curr_inc == 1:

print "\nCTD(A) exceeds critical at crack front %i on load \

increment 1" % front

print "Decrease initial inc size! See CTD results file for details"

os.system('abaqus job='+jobName+' terminate')

exit(0)

else:

print "\nStepping back one increment..."

curr_inc-=1

relative_disp = disps_per_inc[curr_inc]

if not mapped_disp:

abs_disp = relative_disp

else:

abs_disp = getAbsDisps(mapped_disp,relative_disp)

updateDisplacements(mesh,abs_disp)

flags_per_front = computeAndWriteCTDResults(mesh,tol,d,CTDc,\

inpFile,fdbFile,jobName,odbStep,curr_inc,\

pts_per_front,main_side_elems,mate_side_elems)

frac_status_per_front = evaluateFractureCriterion(flags_per_front,eval)

print "\nCrack front %i was supercritical at\n%s increment %i" \

% (front,odbStep,curr_inc+1)

print "May need to decrease FEA increment! See results file."

****************************** runAnalysis MAIN *******************************

Initializing required inputs...

jobName = inpFile.split("/")[-1].split(".")[0] # Job name corresponds to .inp file

staFile = jobName+".sta" # Status file corresponds to job

base = undefInpFile.split(".")[0] # Undeformed .inp file in \Undeformed subdir.

mesh = MeshTools.MeshTools(base,"INP")

inc_interval = 1

i = inc_interval # Access the odb at every ith FEA increment

disps_per_inc = {} # A dict containing incremental displacements

disps_per_inc[0] = 0 # Initialize the dictionary

flags_per_front = {}

eq_flag = 1 # Flag to indicate equilibration step

Calling CTD initializing functions...

Get mapped displacements from mapped_disps.txt (if any)

mapped_disp = getInitialDisps(mapSoln,inpFile)

47

Get main/mate side node groups

(main_side_nodes, mate_side_nodes) = getCrackFaceNodes(mesh)

Main/mate side elements along crack faces

(main_side_elems, mate_side_elems) = getCrackFaceElems(mesh,main_side_nodes,\

mate_side_nodes)

Nodes belonging to main/mate side elements (only need to update disps

for these nodes during the analysis for computing CTD values)

interesting_nodes = getCrackFaceElemNodes(mesh,main_side_elems,mate_side_elems)

Determine points behind crack front(s) where CTDs computed ("CTD points")

pts_per_front = getPoints(main_side_elems,mate_side_elems,main_side_nodes,\

fdbFile,mesh,d)

Set tolerance distance

tol = setTol(mesh,main_side_nodes)

JOB CONTROL:

Initial job submission, suspension, and CTD computation

start_time = time.time()

submitJob()

(curr_step, curr_inc) = getCurrentStatus()

Keep track of current step for disps_per_inc dictionary

(clear the dictionary when we start a new step)

step = curr_step

In some cases, increment info may not be written to odb yet,

in which case disps_per_inc (and flags_per_front) remains empty.

while not flags_per_front:

print "Waiting for displacements to be written to odb..."

odb = openOdb(jobName) # The odb must be closed then re-opened if

we need information that has not been written

to the odb at the current time of access

(curr_step, curr_inc) = getCurrentStatus()

(disps_per_inc, odbStep) = getRelDispsAtInterestingNodes(disps_per_inc,\

interesting_nodes,jobName,curr_step,curr_inc,odb)

Raise flag if done with equilibration step

if odbStep.upper()[0:3] != "EQU":

eq_flag = 0

try:

relative_disp = disps_per_inc[curr_inc] # Disps available at current inc?

if not mapped_disp: # If no initial mapped disps,

then relative_disp=abs_disp

abs_disp = relative_disp

else:

abs_disp = getAbsDisps(mapped_disp,relative_disp)

updateDisplacements(mesh,abs_disp)

flags_per_front = computeAndWriteCTDResults(mesh,tol,d,CTDc,\

inpFile,fdbFile,jobName,\

odbStep,curr_inc,pts_per_front,\

main_side_elems,mate_side_elems)

except:

odb.close()

resumeJob()

continue

48

While the script is running, perform actions based on CTD flags returned.

frac_status_per_front --> A dict where key is crack front id and value is:

0 --> 'subcritical', continue

1 --> critical, extend crack

2 --> 'supercritical', back-up or decrease FEA inc

running = True

while running:

if eq_flag == 0:

Evaluate the fracture criterion, sending to the function the flags

for all CTD(A) points at each crack front and the evaluation criterion

to be used

frac_status_per_front = evaluateFractureCriterion(flags_per_front,eval)

First loop through all crack fronts and check for any that are

supercritical:(if there are, then the analysis will terminate as soon

as this is not the case or inform user to decrease load increment)

for front in frac_status_per_front:

if frac_status_per_front[front] == 2:

previousIncrement(frac_status_per_front,front,eval,curr_inc,\

curr_step,interesting_nodes,mapped_disp,\

pts_per_front,main_side_elems,mate_side_elems,\

odbStep)

os.system('abaqus job='+jobName+' terminate')

printTimeStamp(start_time)

exit(0)

Next loop through all crack fronts and check for any that are critical:

(if there are, then analysis will terminate at current step/increment)

critical = 0

for front in frac_status_per_front:

if frac_status_per_front[front] == 1:

print "\n***Crack front %i is within tolerance of critical***"\

% front

critical = 1

if critical == 1:

print "\nExtend critical crack(s) at increment %d of step %s"\

% (curr_inc,odbStep)

os.system('abaqus job='+jobName+' terminate')

printTimeStamp(start_time)

exit(0)

Finally, if analysis has not terminated, all crack fronts are subcritical

odb.close() # Close odb to update add'l analysis increments

resumeJob()

(curr_step, curr_inc) = getCurrentStatus()

If we started a new step, clear disps_per_inc dictionary and start over

if curr_step > step:

disps_per_inc.clear()

disps_per_inc[0] = 0

step = curr_step

odb = openOdb(jobName)

(disps_per_inc, odbStep) = getRelDispsAtInterestingNodes(disps_per_inc,\

interesting_nodes,jobName,\

curr_step,curr_inc,odb)

Raise flag if done with equilibration step

if odbStep.upper()[0:3] != "EQU":

49

eq_flag = 0

relative_disp = disps_per_inc[curr_inc]

if not mapped_disp:

abs_disp = relative_disp

else:

abs_disp = getAbsDisps(mapped_disp,relative_disp)

updateDisplacements(mesh,abs_disp)

flags_per_front = computeAndWriteCTDResults(mesh,tol,d,CTDc,inpFile,\

fdbFile,jobName,odbStep,curr_inc,\

pts_per_front,main_side_elems,\

mate_side_elems)

************************** DEFINE CTD FUNCTIONS *********************************

**

def getInitialDisps(mapSoln,filePath):

Retrieve mapped displacements from mapped_disp.txt. Return empty dict if none.

mapped_disp = {} # Dict of mapped (initial) nodal displacements

if mapSoln == "N":

print "***Returning empty mapped_disp dict***"

return mapped_disp

elif mapSoln == "Y":

changeDirectory(filePath)

disp_file = 'mapped_disp.txt'

If the disp.txt file doesn't exist, exit

if not os.path.exists(disp_file):

print "***Could not locate mapped_disp.txt from previous analysis!***"

print "(Make sure the file is located with the previous mesh file)"

exit(0)

file = open("mapped_disp.txt","r")

buff = file.readline()

while buff:

data = buff.split()

if data[0].upper()[0:4] == "DISP":

buff = file.readline()

data = buff.split()

while buff:

nid = int(data[0])

tmp = []

for i in range(3):

tmp.append(float(data[i+1]))

mapped_disp[nid] = tmp

buff = file.readline()

data = buff.split()

buff = file.readline()

file.close()

print "***Retrieved initial displacements for %d nodes" % len(mapped_disp)

return mapped_disp

**

50

def getCrackFaceNodes(mesh):

main_side_nodes = []

mate_side_nodes = []

try:

main_side_nodes = getGroupList(mesh,"main_side_nodes","node")

mate_side_nodes = getGroupList(mesh,"mate_side_nodes","node")

except:

try:

main_side_nodes = getGroupList(mesh,"all_main_side_nodes","node")

mate_side_nodes = getGroupList(mesh,"all_mate_side_nodes","node")

except:

print "***No main/mate side nodes found for previous mesh!***"

exit(0)

return main_side_nodes, mate_side_nodes

**

def getCrackFaceElems(mesh,main_side_nodes,mate_side_nodes):

Make sets of main/mate side crack face elements

print "\nCollecting elements along the main and mate side crack face..."

main_side_elems = set()

mate_side_elems = set()

for nid in main_side_nodes:

elist = mesh.GetAdjacentElems(nid)

for eid in elist: main_side_elems.add(eid)

for nid in mate_side_nodes:

elist = mesh.GetAdjacentElems(nid)

for eid in elist: mate_side_elems.add(eid)

return main_side_elems, mate_side_elems

**

def getCrackFaceElemNodes(mesh,main_side_elems,mate_side_elems):

Gather only nodes of interest for updating displacements

nodes = []

for eid in main_side_elems:

nids = mesh.GetElemInfo(eid)

for n in nids:

if n not in nodes:

nodes.append(n)

for eid in mate_side_elems:

nids = mesh. GetElemInfo(eid)

for n in nids:

if n not in nodes:

nodes.append(n)

return nodes

**

def getPoints(main_side_elems,mate_side_elems,main_side_nodes,fdbFile,mesh,d):

print "\nDetermining coordinates of CTD(A) points %g behind \

crack front..." % d

51

First, create a dictionary of crack fronts as keys and

lists of crack front node id's as values (from the fdb)

front_nodes = {}

nodes = []

f=0

fdb = open(fdbFile,'r')

buff = fdb.readline()

while buff:

vals = buff.split()

if vals[0].upper() == "NUM_FRONTS:":

nfronts = int(vals[1])

break

buff = fdb.readline()

buff = fdb.readline()

while len(front_nodes) < nfronts:

buff = fdb.readline()

vals = buff.split()

if vals[0].upper() == "FRONT_NODES:":

n = int(vals[1])

while len(nodes) < n:

buff = fdb.readline()

vals = buff.split()

for i in range(len(vals)):

nodes.append(int(vals[i]))

front_nodes[f] = nodes

nodes = []

f+=1

fdb.close()

if len(front_nodes) != nfronts:

print "Only found %i crack fronts in %s" % (i+1,fdbFile)

#print "\nHere is the front_nodes dict:\n"

#print front_nodes

Second, create a nested dictionary where, for each crack front id (key),

the value is a dictionary with front node id's as keys and corresponding

Vec3D points located d distance "behind" each crack front node as values.

#

pts_per_front = {crack_front_id: {front_node_id: CTD_point}}

#

pts_per_front = {}

Loop over the crack fronts (handles multiple fronts)

for front in front_nodes:

pts = {}

For this crack front, loop over the crack front nodes

for nid in front_nodes[front]:

flag = 0

adj_nodes = mesh.GetAdjacentCornerNodes(nid)

Rely on topology to find the adjacent node directly

"behind" the crack front node (this approach may break

down in certain instances, e.g. if crack front mesh

52

template is not used.) The immediately adjacent

nodes on the main and mate surfaces should be initially

coincident, so just query the main surface node set for

a match. Note that for quadratic elements, only corner

nodes will return an adjacent corner node.

for node in adj_nodes:

if node in main_side_nodes:

flag = 1 # the front node is a corner node

break

if flag == 0: # Mid-side nodes along front don't have

continue # adjacent nodes on the crack face

adj_ncoord = mesh.GetNodeCoords(node)

front_ncoord = mesh.GetNodeCoords(nid)

Generate vector pointing from the crack front node

to the adjacent surface node

vec = []

for i in range(3):

vec.append(adj_ncoord[i]-front_ncoord[i])

mag = sqrt(pow(vec[0],2)+pow(vec[1],2)+pow(vec[2],2))

Now get point coordinates using the unit vector

components multiplied by the user specified distance, d.

x = front_ncoord[0] + vec[0]/mag*d

y = front_ncoord[1] + vec[1]/mag*d

z = front_ncoord[2] + vec[2]/mag*d

pts[nid] = Vec3D.Vec3D(x,y,z)

pts_per_front[front] = pts

print "\nReturning CTD(A) points at d=%g behind crack front nodes..." % d

print pts_per_front

print len(front_nodes)

return pts_per_front

**

def setTol(mesh,main_side_nodes):

Set PointInside tolerance to an adequate value local to the crack face:

1/1000 of the smallest crack face edge length. This will be used in

the functions IsPointOutsideMesh (to check CTD pts) and GetElemsAtPoint

min_length = mesh.GetMaxDimension() # A starting dimension

print "\nSetting tolerance for MeshTools functions..."

for nid in main_side_nodes:

elengths = mesh.GetAdjacentSurfEdgeLengths(nid)

min_length = min(min_length,min(elengths))

tol = min_length/100.0

mesh.SetPointInsideTolerance(tol)

return tol

**

def getRelDispsAtInterestingNodes(disps_per_inc,nodes,jobName,curr_step,curr_inc,odb):

Get displacements at the nodes of interest for the current load step/inc.

These are "relative" displacements because they do not account for initial

mapped displacements.

print "\nAccessing odb to get displacements for nodes of interest"

print "through load step %i increment %i..." % (curr_step,curr_inc)

Fill dictionary of [x,y,z] displacements for all relevent nodes

53

relative_disps = {}

try:

odbStep = odb.steps.keys()[curr_step-1]

except:

print "Looks like current step has not been written to odb file. Exiting."

exit(0)

Loop through increments, from most recent stored increment to current

for odbFrame in range(max(disps_per_inc)+1,curr_inc+1):

try:

fieldObject = odb.steps[odbStep].frames[odbFrame].fieldOutputs['U']

print "Increment %i..." % odbFrame

for nid in nodes:

values = fieldObject.values[nid-1].data

relative_disps[nid] = values

disps_per_inc[odbFrame] = relative_disps

relative_disps = {}

except:

print "No odb info yet for %s increment %i" % (odbStep,odbFrame)

return disps_per_inc, odbStep

print "Got 'em!"

**

def getAbsDisps(mapped_disp,relative_disp):

Function to get absolute nodal displacements by summing the

mapped displacements with the current relative displacements.

print "\nGetting absolute disps for nodes of interest at current step/inc..."

abs_disp = {}

for nid in relative_disp:

disp = []

for i in range(3):

disp.append(relative_disp[nid][i]+mapped_disp[nid][i])

abs_disp[nid] = disp

return abs_disp

print "Got 'em!"

**

def updateDisplacements(mesh,abs_disp):

Write a temporary file of absolute displacements for nodes of interest

to be read into mesh results (update to current displacements)

print "\nUpdating current displacements..."

tmpfile = open('tmp_current_disps.txt',"w")

for nid in abs_disp:

line = '%d\t%.15f\t%.15f\t%.15f\n' %(nid,abs_disp[nid][0],\

abs_disp[nid][1],abs_disp[nid][2])

tmpfile.write(line)

tmpfile.close()

mesh.ReadFeawdCpDisps('tmp_current_disps.txt')

os.system('del tmp_current_disps.txt')

**

def computeAndWriteCTDResults(mesh,tol,d,CTDc,inpFile,fdbFile,jobName,odbStep,\

54

curr_inc,pts_per_front,main_side_elems,mate_side_elems):

Compute CTD results and write to input file directory

changeDirectory(inpFile)

Partition CTD values into subcritical, critical, and supercritical

flags_per_front = {} # A dictionary where key is crack front id

and value is list of flags for all CTD(A) points

flag = 0 # Flag written to results file

Write the file header

resultsFile = 'CTDResults.txt'

if os.path.isfile(resultsFile):

file = open(resultsFile,"a")

else:

file = open(resultsFile,"w")

file.write('CTD Results\n')

file.write('Results provided along crack fronts (z_min to z_max)\n\n')

file.write('\n**')

Write sub-header

file.write('\n\nMesh file: %s\n' % inpFile)

file.write('Crack file: %s\n' % fdbFile)

file.write('Job name: %s\n' % jobName)

file.write('ABAQUS Step Name: %s\n' % odbStep)

file.write('Frame: %i\n' % curr_inc)

file.write('Distance behind crack front nodes: %g\n' % d)

file.write('Critical opening displacement: %g\n\n' % CTDc)

Write CTD results for CTD points at each crack front

for front in pts_per_front:

print "front"

flags = [] # A list of flags for each CTD(A) point

file.write('\nCrack Front ID: %i\n' % front)

file.write('\nCorresponding\tCTD_I\t\tCTD_II\t\tCTD_III\tCTD_mag\tFlag')

file.write('\tCTD_ptZCoord\nFrontNodeId\n')

file.write('---\n')

temp_dict = {}

print pts_per_front[front]

First sort the front node id's by their z-coords.

for nid in pts_per_front[front]: # Unsorted

ncoords = mesh.GetNodeCoords(nid)

zcoord = ncoords[2]

temp_dict[zcoord] = nid

sorted_front_nids = sortDictValsByKey(temp_dict) # Sorted

Move along crack front, computing CTD at points "behind"

each front node ID

for nid in sorted_front_nids:

CTD_pt = pts_per_front[front][nid]

status,dist = mesh.IsPointOutsideMesh(CTD_pt)

if status != -2:

file.write('***CTD_pt (%g, %g, %g) is outside mesh and \

has been skipped!' % (CTD_pt[0],CTD_pt[1],CTD_pt[2]))

file.write(' (Behind front node %i)***' % nid)

continue

55

Associate CTD_pt with elems on main/mate faces

(If less than two elems found, decrease meshTools tol and try again)

Reset MeshTools tol each time in case it was increased previously

mesh.SetPointInsideTolerance(tol)

elist = mesh.GetElemsAtPoint(CTD_pt)

initial_tol = tol

Get displacement on the main side crack face for this CTD point

(displacement accounts for initial mapped displacements)

main_eid = -1

while main_eid == -1:

for eid in elist:

Loop through elems until find main_side element

if eid in main_side_elems:

#print "main side elem for nid %g: %g" % (nid,eid)

main_eid = eid

break

If found main_side element, jump out of while loop

if main_eid != -1:

continue

Otherwise reset the tolerance and try again

else:

#print "newtol"

new_tol = initial_tol*10.0

#print new_tol

mesh.SetPointInsideTolerance(new_tol)

elist = mesh.GetElemsAtPoint(CTD_pt)

initial_tol = new_tol

disp1 = mesh.GetPtDisp(CTD_pt,main_eid)

ct=1

Get displacement on the mate side crack face for this CTD point

(displacement accounts for initial mapped displacements)

mate_eid = -1

while mate_eid == -1:

for eid in elist:

#print "elem:"

#print eid

Loop through elems until find mate_side element

if eid in mate_side_elems:

#print "mate side elem for nid %g: %g" % (nid,eid)

mate_eid = eid

break

If found mate_side element, jump out of while loop

if mate_eid != -1:

continue

Otherwise reset the tolerance and try again

else:

#print "newtol"

new_tol = initial_tol*10.0

#print new_tol

mesh.SetPointInsideTolerance(new_tol)

elist = mesh.GetElemsAtPoint(CTD_pt)

initial_tol = new_tol

disp2 = mesh.GetPtDisp(CTD_pt,mate_eid)

56

Sometimes same element associated for main and mate surfaces

(notice especially with poorly shaped elements around crack front).

Check for this condition and exit if that's the case.

if main_eid == mate_eid:

print "Same main/mate elem found for CTD pt behind node %g" % nid

print "Check the quality of the mesh. Exiting!"

exit(0)

Compute CTD's and raise flag if critical value is reached

NOTE: The specific fracture criterion evaluation is handled in the

function evaluateFractureCriterion

CTD = disp1 - disp2 # vector of disps

CTD_I = abs(CTD[1]) # Mode I --> y-disp

CTD_II = abs(CTD[0]) # Mode II--> x-disp

CTD_III = abs(CTD[2]) # Mode III-> z-disp

CTD_mag = sqrt(pow(CTD_I,2)+pow(CTD_II,2)+pow(CTD_III,2))

tol = CTDc*0.02 # Tolerance is 2% of specified critical value

if abs(CTD_mag-CTDc) < tol: # CTD = CTDc +- tol

flag = 1

flags.append(flag)

elif CTD_mag > CTDc: # CTD >> CTDc

flag = 2

flags.append(flag)

else:

flag = 0 # CTD << CTDc

flags.append(flag)

file.write('%i\t\t%g\t%g\t%g\t%g\t%i\t%g\n' % \

(nid,CTD_I,CTD_II,CTD_III,CTD_mag,flag,CTD_pt[2]))

flags_per_front[front] = flags

print "\nDone writing to the results file!"

file.close()

return flags_per_front

**

def evaluateFractureCriterion(flags_per_front,eval):

eval --> =0.0 corresponds to mid-thickness only option

--> !=0 corresponds to % of CTD points that must meet criterion

frac_status_per_front = {} # A dictionary where key is crack front id

and value is:

0 --> subcritical, continue

1 --> critical, extend

2 --> supercritical, back-up

For the mid-thickness only criterion evaluation:

if eval == 0.0:

Loop through each crack front

for front in flags_per_front:

index = []

If even number of points through-thickness,

get indices of the middle two points

if len(flags_per_front[front]) % 2 == 0:

index.append((len(flags_per_front[front])-2)/2)

index.append(len(flags_per_front[front])/2)

57

Otherwise, if odd number of points through-thickness,

get index of the middle CTD(A) point

else:

index.append((len(flags_per_front[front])-1)/2)

for i in index:

The critical case:

if flags_per_front[front][i] == 1:

frac_status_per_front[front] = 1

break

The supercritical case:

elif flags_per_front[front][i] == 2:

frac_status_per_front[front] = 2

break

The subcritical case:

elif flags_per_front[front][i] == 0:

frac_status_per_front[front] = 0

break

For the evaluation case where eval% of points must meet criterion

elif eval != 0.0:

Loop through each crack front

for front in flags_per_front:

Count number of sub-, super-, and critical flags along front

sub = 0 # Clear the count

super = 0 # Clear the count

crit = 0 # Clear the count

total = len(flags_per_front[front])

for flag in flags_per_front[front]:

if flag == 1:

crit+=1

elif flag == 2:

super+=1

elif flag == 0:

sub+=1

The critical case:

if (float(crit)/float(total)) >= eval:

frac_status_per_front[front] = 1

continue

The supercritical case:

elif (float(super)/float(total)) >= 1-eval:

frac_status_per_front[front] = 2

continue

The subcritical case:

else:

frac_status_per_front[front] = 0

return frac_status_per_front

*********************************** MAIN ***

**

NOTE: This script script cannot be executed from the CAE if *MAP SOLUTION is

specified since the keyword is not yet supported by the CAE (and consequently

the old job cannot be specified)

if __name__ == "__main__":

58

print __doc__

inpFile = sys.argv[-4] # deformed .inp file (current crack step)

undefInpFile = sys.argv[-3] # undeformed .inp file in Undeformed sub-dir

fdbFile = sys.argv[-2] # .fdb file generated by FRANC3D\NG

odbFile = sys.argv[-1] # .odb file of previous analysis that ABAQUS

should use to map solution

changeDirectory(inpFile)

if not odbFile.upper() == "NONE":

Old job path

oldJob = odbFile.split(".")[0]

mapSoln = "Y"

Check for all the necessary restart files of the old job

res = oldJob+'.res'

mdl = oldJob+'.mdl'

stt = oldJob+'.stt'

prt = oldJob+'.prt'

if not os.path.exists(res):

print "\tCannot find restart file for the oldJob."

print "\tCheck that it exists. Exiting."

exit(0)

if not os.path.exists(mdl):

print "\tCannot find .mdl file for the oldJob."

print "\tCheck that it exists. Exiting."

exit(0)

if not os.path.exists(stt):

print "\tCannot find stt file for the oldJob."

print "\tCheck that it exists. Exiting."

exit(0)

if not os.path.exists(prt):

print "\tCannot find restart file for the oldJob."

print "\tCheck that it exists. Exiting."

exit(0)

else:

oldJob = "None"

mapSoln = "N"

Check that status file doesn't already exist. If it does, delete it so that

we don't tail the existing file

staFile = inpFile.split(".")[0]+".sta"

if os.path.isfile(staFile):

response = raw_input("\nThe file %s already exists. Overwrite file? (y/n): "\

% staFile)

if response.upper()[0] == "N":

print "Exiting program."

exit(0)

elif response.upper()[0] == "Y":

os.system('del '+staFile)

else:

print "Unknown response. Exiting."

exit(0)

59

Request CTD parameters:

print "--------------- USER INPUTS -----------------"

--> Distance, d, behind crack front

d = askForFloat("\nMonitor opening at this distance behind crack front: ")

--> CTD or CTOA

response = raw_input("\nWould you like to specify critical 'CTD' or 'CTOA'?: ")

while response.upper() not in ("CTD","CTOA"):

response = raw_input("\n\tSpecify 'CTD' or 'CTOA': ")

if response.upper() in "CTD":

CTDc = askForFloat("\n\tCritical CTD: ")

elif response.upper() in "CTOA":

CTOAc = askForFloat("\n\tCritical CTOA (degrees): ")

Convert CTOAc value to CTDc for Mode I

rad = CTOAc*math.pi/180

CTDc = rad*d

--> Criterion

print "\nHow is fracture criterion evaluated?"

response = askYesNo("\n\tEvaluate at mid-thickness only?: ")

if response in "Y":

eval = 0.0

if response in "N":

print "\n\tCriterion will be evaluated at a percentage of points"

response = askForInt("\n\tSpecify percentage of points that must meet criterion: ")

eval = float(response)/100

print "\n--------------- STARTING FEA -----------------"

Start the analysis

runAnalysis(d,CTDc,eval,oldJob,mapSoln,undefInpFile,inpFile,fdbFile)

B. Deformation Mapping Script

Two scripts are provided for mapping deformation from the previous mesh to the current,

undeformed mesh generated by FRANC3D\NG. The �rst script, called runMapScript.py, simply

prompts the user for a series of input, including paths to various required �les. The user will also

be asked whether or not the analysis is a local-global analysis (i.e. if the model has global and

sub-regions). If it is, then displacements on the global region will simply be transferred from old

to new meshes, as the global mesh remains unchanged and does not require invoking the inverse

isoparametric mapping routine. The user will also be asked whether or not the previous analysis is

a restart analysis so that the correct restart �les are accessed and displacements are taken from the

correct load increment. The script can be run from any directory. The user should execute the script

from the MS-DOS command window using a command like: �...>abaqus python runMapScript.py".

The script runMapScript.py automatically calls the script masterMapDisplacements.py, which

retrieves displacements from the previous FE analysis, maps them onto the current undeformed

60

mesh, and generates a deformed mesh �le (*.inp) for the current crack increment. The deformed

*.inp �le will contain the *Map Solution ABAQUS [1] keyword and an equilibration step, during

which all nodes with applied boundary conditions are �xed. The script also generates the sub-

directory Undeformed and moves the original undeformed mesh into that directory. Output and

print statements during mapping are written to the abaqus.rpy �le in the current working directory.

After mapping, the script CTDjobControlCall.py is called and the next FE analysis automati-

cally begins and continues until CTD≈CTDcrit.

Successful execution of these scripts require the compiled libraries Vec3D, ColTensor, Full-

Tensor, and MeshTools to be located in a directory accessible by ABAQUS R⃝ (e.g. in the

ABAQUS>Python>Obj directory). Elements currently supported for mapping include linear and

quadratic brick elements (C3D8 and C3D20), quadratic wedge elements (C3D15), and quadratic

tetradhedral elements (C3D10).

Electronic versions of the deformation mapping scripts are available for download at

www.cfg.cornell.edu.

'''

runMapScript.py

This script:

1) generates a .model file from the current undeformed

.inp file,

2) generates mapped displacements from old mesh to new

undeformed mesh,

3) appends these displacements to the .model file,

4) moves the undeformed .inp file to a new directory, and

5) rewrites the .inp file in the deformed configuration,

6) automatically calls CTDjobControlCall.py to start the

nextFEA if "yes" at prompt.

Requires an initial undeformed .inp file for the current

step, a .model file for the previous step (with a header

for mapped displacements), as well as the following compiled

scripts:

Vec3D, ColTensor, FullTensor, MeshTools

AD Spear, MG Veilleux, and JD Hochhalter

(written October 2009 with subsequent modifications)

'''

import os, sys

61

from sys import exit

from abaqusConstants import *

import odbAccess

def askForPath(prompt,extension):

Request path from user

response = raw_input(prompt)

while not os.path.exists(response):

print "Specified path could not be located."

print "Check that path exists and try again."

response = raw_input(prompt)

while not response.split('.')[-1] == extension:

print "\n**File path should have extension '%s'**" % extension

response = raw_input(prompt)

return response

def askYesNo(question):

Request yes/no response from user

(Returns "Y" or "N")

response = raw_input(question)

while response.upper()[0] not in ("Y","N"):

response = raw_input(question)

if response.upper()[0] not in ("Y","N"):

print "Wrong answer! Try again"

return response.upper()[0]

**

def getFdb(path):

fdb = str()

First try splitting on "."

tmp = path.split(".")

tmp[-1] = '.fdb'

for i in range(len(tmp)):

fdb+=tmp[i]

If doesn't exist, try splitting on "_"

if not os.path.exists(fdb):

fdb = str()

tmp = path.split("_")

tmp[-1] = '.fdb'

for i in range(len(tmp)):

fdb+=tmp[i]

if not os.path.exists(fdb):

print "The file %s cannot be located." % fdb

exit(0)

print "\nGetting %s" % fdb

return fdb

def getOdb(path,localglobal,res):

odb = str()

tmp = path.split(".")

if localglobal == "Y" and res == "N":

tmp[-1] = '_full.odb'

elif localglobal == "Y" and res == "Y":

62

tmp[-1] = '_full_res.odb'

elif localglobal == "N" and res == "Y":

tmp[-1] = '_res.odb'

else:

tmp[-1] = '.odb'

for i in range(len(tmp)):

odb+=tmp[i]

while not os.path.exists(odb):

print "The file %s cannot be located." % odb

odb = raw_input("\nEnter path to corresponding odb file:\n")

print "\nGetting %s" % odb

return odb

def askForInt(number):

Request int from user

response = int(raw_input(number))

while response < 0 :

print "Requested value must be a positive integer. Try again."

response = int(raw_input(number))

return response

*********************************** MAIN ***

**

if __name__ == "__main__":

print __doc__

currInpFile = ""

currInpFile_full = ""

Ask user if analysis is local-global analysis

prompt0 = "Is analysis local-global \

(i.e. *_full files generated by F3DNG)?:\n"

localglobal = askYesNo(prompt0)

Request .inp file of job from which displacements will be mapped

(if local-global, just the local input file generated by F3DNG)

if localglobal == "Y":

prompt1 = "\nPath of old, undeformed input file \

(local region)\n(e.g. C:/.../oldMesh.inp):\n"

prevInp = askForPath(prompt1,'inp')

else:

prompt1 = "\nPath of old, undeformed input file \

\n(e.g. C:/.../oldMesh.inp):\n"

prevInp = askForPath(prompt1,'inp')

Get top level directory to search for .fdb and .odb files

tmp = prevInp.split("/Undeformed/")

dir = tmp[0]+"/"+tmp[-1]

print dir

Search for corresponding .fdb file

fdbPrev = getFdb(dir)

print fdbPrev

63

If the analysis is local-global, need both

the *.inp and *_full.inp files

if localglobal == "N":

Request current .inp file to which displacements will be mapped

prompt2 = "\nPath of current .inp file to which displacements \

will be mapped\n(e.g. C:/.../newMesh.inp):\n"

currInpFile = askForPath(prompt2,'inp')

Check for existence of corresponding .fdb file

fdbCurr = getFdb(currInpFile)

elif localglobal == "Y":

Request *.inp generated by F3DNG

prompt2a = "\nPath of most recent (local) *.inp file \

generated from F3DNG:\n"

currInpFile = askForPath(prompt2a,'inp')

Check for existence of corresponding .fdb file

fdbCurr = getFdb(currInpFile)

Also check for the *_full.inp of the current, joined file

tmp = currInpFile.split(".")

tmp[-1] = "_full.inp"

for i in range(len(tmp)):

currInpFile_full+=tmp[i]

if not os.path.exists(currInpFile_full):

print "Cannot locate the file %s" % currInpFile_full

exit(0)

else:

print "Retrieving %s" % currInpFile_full

Search for .odb file of old mesh and access the file

prompt0 = "\nMap disps. from a *_full_res.odb file?:\n"

res = askYesNo(prompt0)

odbFile = getOdb(dir,localglobal,res)

try:

odb = odbAccess.openOdb(path=odbFile,readOnly=TRUE)

except:

print "ERROR: Unable to open the specified odb %s" % odbFile

exit(0)

Ask for analysis step to map displacements from

prompt3 = "\nName of step displacements will be mapped from:\n"

stepName = raw_input(prompt3)

if stepName not in odb.steps.keys():

print "\nERROR: Step '%s' does not exist in %s\n"\

"\tCheck for the case in the step name." % (stepName, odbFile)

exit(0)

Ask for frame number (load increment) to map displacements from

frame = askForInt("\nFrame number (increment) to map \

displacements from:\n")

if len(odb.steps[stepName].frames) < frame:

print "\nERROR: Frame %i does not exist in %s\n"\

"\tCheck for the case in the .sta file." % (frame, odbFile)

exit(0)

odb.close()

64

Input parameters to masterMapDisplacements.py script***

os.system('abaqus cae noGUI=masterMapDisplacements.py -- '\

+res+' '+localglobal+' '+prevInp+' '+fdbPrev+' '+odbFile+' '\

+currInpFile+' '+currInpFile_full+' '+fdbCurr+' '\

+stepName+' '+str(frame))

Pass arguments to CTDjobControlCall script

prompt4 = "\nStart FEA with CTD job control?:\n"

start = askYesNo(prompt4)

if start == "Y":

Current deformed input file

if localglobal == "Y":

defInpFile = currInpFile_full

else:

defInpFile = currInpFile

Undeformed input file located in Undeformed sub-dir

undefInpFile = str()

tmp = currInpFile.split("/")

fileName = tmp[-1]

tmp[-1] = "Undeformed"

for i in range(len(tmp)):

undefInpFile+=tmp[i]+"/"

undefInpFile+=fileName

.fdb file

fdb = getFdb(currInpFile)

print "Calling CTDjobControlCall.py"

os.system('abaqus python CTDjobControlCall.py -- '\

+defInpFile+' '+undefInpFile+' '+fdb+' '+odbFile)

else:

print "Displacement mapping complete!"

Finally, move the abaqus.rpy file to the directory of the current mesh

print "Moving the abaqus.rpy file..."

currPath = str()

tmp = currInpFile.split("/")

for i in range(len(tmp)-1):

currPath+=tmp[i]

currPath+="/"

currPath+="abaqus.rpy"

os.rename("abaqus.rpy",currPath)

os.remove("abaqus_acis.log")

'''

masterMapDisplacements.py

Executed by runMapDisplacements.py

'''

import Vec3D

import ColTensor

65

import FullTensor

import MeshTools

import os, glob, sys, time

from abaqus import *

from abaqusConstants import *

import part

import assembly

import mesh

from sys import argv, exit

import odbAccess

def changeDirectory(pathToFile):

path = str()

tmp = pathToFile.split("/")

for i in range(len(tmp)-1):

path+=tmp[i]

path+="/"

print path

os.chdir(path)

def createSubDirectory(filePath,subDirName):

newdir = ''

path = filePath.split("/")

for i in range(len(path)-1):

newdir+=path[i]+"/"

newdir+=subDirName+"/"

if not os.path.isdir(newdir):

os.mkdir(newdir)

return newdir

def createMeshToolsObject(filePath,extension):

base = str()

tmp = filePath.split(".")

tmp[-1] = ''

for i in range(len(tmp)):

base+=tmp[i]

meshObj = MeshTools.MeshTools(base,extension)

return meshObj

def getGroupList(meshObj,listName,type):

list = meshObj.GetGroupInfo(listName,type)

if len(list) == 0:

print "***No members found in group: %s ***" % listName

return list

def printTimeStamp(start_time):

Print time stamp

end_time = time.time()

mins = int((end_time-start_time)/60)

secs = round((end_time-start_time)%60,3)

print "\n***"

66

print "\nTotal time for mapping: %i:%g" % (mins,secs)

print "\n***"

******************* GET INITIAL DISPLACEMENTS FROM OLD MESH *********************

def getInitialDisplacements(filePath):

Get initial displacements, if any, from the ## Displacement header of the

.model file of the previous mesh

initial_disps = {}

disp_file = str()

buff = filePath.split('/')

for i in range(len(buff)-1):

disp_file+=buff[i]+'/'

disp_file+='mapped_disp.txt'

print disp_file

If the disp.txt file doesn't exist, continue, but inform analyst

if not os.path.exists(disp_file):

print "***Could not locate mapped_disp.txt from previous analysis!***"

print "(Make sure the file is located with the previous mesh file)"

return initial_disps

file = open(disp_file,'r')

buff = file.readline()

while buff:

data = buff.split()

if data[0].upper()[0:4] == "DISP":

buff = file.readline()

data = buff.split()

while buff:

nid = int(data[0])

tmp = []

for i in range(3):

tmp.append(float(data[i+1]))

initial_disps[nid] = tmp

buff = file.readline()

data = buff.split()

buff = file.readline()

file.close()

print "***Retrieved initial displacements for %d nodes***" % len(initial_disps)

return initial_disps

**************** GET RELATIVE DISPLACEMENTS FROM PREVIOUS ANALYSIS **************

def getRelativeDisplacements(odbFile,stepName,frame,oldNodeList,localglobal):

Extract displacements at the critical step and increment from the previous

analysis

relative_disps = {} # Dictionary containing odb disps. for all nodes

l_relative_disps = {} # Dictionary containing odb disps. for local nodes

g_relative_disps = {} # Dictionary containing odb disps. for global nodes

fullNodeList = [] # List of all nodes from odb-->indices correspond to

indices in .odb node list

g_odbIndices = [] # List of node indices from odb global nodes for

referencing nodes by index rather than node ID

(if local-global analysis)

67

try:

odb = odbAccess.openOdb(path=odbFile,readOnly=TRUE)

except:

print "ERROR: Unable to open %s" % odbFile

exit(0)

Get step number corresponding to stepName

for i in range(len(odb.steps.keys())):

if stepName in odb.steps.keys()[i]:

stepNum = i+1

Create list of all nodes in model

NOTE: nodeLabels do not necessarily correspond to fieldObject index

especially for local/global join

for instance in odb.rootAssembly.instances.keys():

for i in range(len(odb.rootAssembly.instances[instance].nodes)):

fullNodeList.append(odb.rootAssembly.instances[instance].nodes[i].label)

fieldObject = odb.steps[stepName].frames[frame].fieldOutputs['U']

If the model is local-global, then separate odb displacements into

local and global dictionaries, to be handled separately

if localglobal == "Y":

for nid in fullNodeList:

index = fullNodeList.index(nid)

disps = fieldObject.values[index].data

if nid in oldNodeList:

l_relative_disps[nid] = disps

else:

g_relative_disps[nid] = disps

g_odbIndices.append(index)

Otherwise include all odb disps into a single dictionary

elif localglobal == "N":

for nid in fullNodeList:

index = fullNodeList.index(nid)

disps = fieldObject.values[index].data

relative_disps[nid] = disps

else:

print "Unknown response to local/global command prompt"

exit(0)

odb.close()

if len(relative_disps) > 0:

print "***Retrieved odb disps for %d nodes" % len(relative_disps)

elif len(l_relative_disps) > 0 and len(g_relative_disps)>0:

print "***Retrieved odb disps for %d local nodes and %d global nodes" % \

(len(l_relative_disps), len(g_relative_disps))

else:

print "***No relative displacements retrieved from odb. \

Exiting map script."

exit(0)

return stepNum,fullNodeList,relative_disps,l_relative_disps,\

g_relative_disps,g_odbIndices

68

************************ COMPUTE ABSOLUTE DISPLACEMENTS *************************

def computeAbsoluteDisplacements(initial_disps,relative_disps,nodeList,prevMesh):

Compute the absolute nodal displacements for the old mesh at the critical

load step/increment of interest

abs_disps = {}

Quick check that length of lists are the same

if len(relative_disps) != len(nodeList):

print "Size of lists disagree in computeAbsoluteDisplacements function!"

exit(0)

if len(initial_disps) != len(relative_disps):

if len(initial_disps) == 0:

print "***No initial displacements found in previous mesh***"

print "***Check that previous mesh did not have initial \

displacements***"

print "***(Mapping will only include relative displacements from the odb)"

Set initial displacements to zero

for node in nodeList:

initial_disps[node] = [0,0,0]

else:

print "***Initial and relative displacements found for different \

number of nodes!"

print "***Check model and odb files from previous mesh for the discrepancy!"

exit(0)

for node in nodeList:

d = []

for i in range(0,3):

try:

val = float(initial_disps[node][i])+float(relative_disps[node][i])

d.append(val)

except:

print "***Error computing absolute displacements for node %d!" % node

print "***Check that initial and relative disp vals exist for the node"

exit(0)

abs_disps[node] = d

return abs_disps

******************* MAP DISPLACEMENTS TO NEW UNDEFORMED MESH ********************

def mapDisplacementsToUndeformedMesh(mesh1,abs_disps,mesh2):

*************** mapDisplacementsToUndeformedMesh SUB-FUNCTIONS **************

'''

def parseModelFileForGroup(file,keyword):

list = []

fd = open(file,"r")

buff = fd.readline()

while buff:

69

data = buff.split()

if len(data) == 5: # Implying group sub-header line

if data[4].upper() == keyword:

print "Found %s in %s" % (keyword,file)

buff = fd.readline()

data = buff.split()

while buff and data[0] != "#":

for i in range(len(data)):

list.append(int(data[i]))

buff = fd.readline()

data = buff.split()

break

buff = fd.readline()

fd.close()

return list

'''

def makeElemSet(mesh,nodeList):

Create a set of elements that contain the nodes in nodeList

setName = set()

for nid in nodeList:

elist = mesh.GetAdjacentElems(nid)

for eid in elist:

setName.add(eid)

if len(setName) == 0:

print "***ERROR: None found for the case %s" % set

return setName

def setPointInsideTol(mesh,mainNodeList,mateNodeList):

Set point inside tolerance to 1/1000 of the smallest crack

face edge length

min_length = mesh.GetMaxDimension() # Initialize a minimum length

for nid in mainNodeList:

elengths = mesh.GetAdjacentSurfEdgeLengths(nid) # function returns

min_length = min(min_length,min(elengths)) # error if nid is

not surface node

for nid in mateNodeList:

elengths = mesh.GetAdjacentSurfEdgeLengths(nid)

min_length = min(min_length,min(elengths))

print "min_length"

print min_length

initial_tol = min_length/1000.0

mesh.SetPointInsideTolerance(initial_tol)

print "***Min edge length is: %f" % min_length

print "***Tolerance is: %f" % initial_tol

return initial_tol

70

def mapCrackFaceNodeDisps():

print "***WARNING: main- and mate-side choices are assumed to be\n \

consistent in both crack models. "

print "***Check fdb files to check validity of this assumption!"

The mesh objects for the previous and current meshes should contain

the necessary main/mate side node groups (excluding crack front nodes)

for the cases with and without a crack front template.

First collect the main/mate side node sets

try:

main_side_nodes1 = getGroupList(mesh1,"main_side_nodes","node")

mate_side_nodes1 = getGroupList(mesh1,"mate_side_nodes","node")

except:

try:

main_side_nodes1 = getGroupList(mesh1,"all_main_side_nodes","node")

mate_side_nodes1 = getGroupList(mesh1,"all_mate_side_nodes","node")

except:

print "***No main/mate side nodes found for previous mesh!***"

exit(0)

try:

main_side_nodes2 = getGroupList(mesh2,"main_side_nodes","node")

mate_side_nodes2 = getGroupList(mesh2,"mate_side_nodes","node")

except:

try:

main_side_nodes2 = getGroupList(mesh2,"all_main_side_nodes","node")

mate_side_nodes2 = getGroupList(mesh2,"all_mate_side_nodes","node")

except:

print "***No main side nodes found for current mesh!***"

exit(0)

#print len(main_side_nodes1)

#print len(mate_side_nodes1)

#print len(main_side_nodes2)

#print len(mate_side_nodes2)

Next make sets of main/mate crack face elements for the previous mesh

print "***Collecting main/mate side elems from previous mesh..."

main_side_elems1 = makeElemSet(mesh1,main_side_nodes1)

mate_side_elems1 = makeElemSet(mesh1,mate_side_nodes1)

Set an initial PointInside tolerance based on the previous mesh

This is the tolerance for checking existence of a point from

the new mesh in the old mesh.

initial_tol = setPointInsideTol(mesh1,main_side_nodes1,mate_side_nodes1)

Map displacements onto the crack face nodes of the current mesh

crkface_node_disps = {}

First map displacements to main_side nodes of current mesh

for nid in main_side_nodes2:

Reset tolerance in case it was previously increased.

tol = initial_tol

mesh1.SetPointInsideTolerance(tol)

elist = []

71

info = mesh2.GetNodeInfo(nid)

pt = info[0]

status,dist = mesh1.IsPointOutsideMesh(pt)

Make sure pt. is within the bounding box of the mesh

if status == -3:

print "***Node id: %i " % nid

print "***Nodal coords: "

print pt

print "***Status (old eid): %i" % status

raise ValueError, "Query point must be inside mesh"

If the point in the new mesh exists in a crackface element of

the old mesh, then interpolate displacements only from the containing

element (i.e. do not interpolate over surrounding elements in high

gradient region!)

Associate node with elements in previous mesh. If empty range tree

search (which happens numerically on rare instances), increase tol

and try again.

while len(elist) == 0:

try:

elist = mesh1.GetElemsAtPoint(pt)

except:

print "Tol increased for nid %g due to empty range tree search"\

% nid

new_tol = tol*10.0

mesh1.SetPointInsideTolerance(new_tol)

tol = new_tol

main_eid = -1

mate_flag = 0

Loop through associated elems and look for containing main_side elem

in previous mesh (won't be the case for nodes in new surface area).

for eid in elist:

if eid in main_side_elems1:

main_eid = eid

break

if eid in mate_side_elems1:

mate_flag = 1

If a mate_side element was associated, but not a main_side element,

then enter while loop to increase query tolerance.

while main_eid == -1 and mate_flag == 1:

new_tol = tol*10.0

print "increasing tolerance to %f for nid %g" % (new_tol,nid)

mesh1.SetPointInsideTolerance(new_tol)

elist = mesh1.GetElemsAtPoint(pt)

for eid in elist:

if eid in main_side_elems1:

main_eid = eid

break

tol = new_tol

72

disp = mesh1.GetPtDisp(pt,main_eid)

crkface_node_disps[nid] = disp

print "looped through all main_side_nodes2"

Next map displacements to mate_side nodes of current mesh

(just like above)

for nid in mate_side_nodes2:

Reset tolerance in case it was previously increased.

tol = initial_tol

mesh1.SetPointInsideTolerance(tol)

elist = []

info = mesh2.GetNodeInfo(nid)

pt = info[0]

status,dist = mesh1.IsPointOutsideMesh(pt)

Make sure node clearly exists inside previous mesh

if status == -3:

print "***Node id: %i " % nid

print "***Nodal coords: "

print pt

print "***Status (old eid): %i" % status

raise ValueError, "Query point must be inside mesh"

Associate node with elements in previous mesh. If empty range tree

search (which happens numerically on rare instances), increase tol

and try again.

while len(elist) == 0:

try:

elist = mesh1.GetElemsAtPoint(pt)

except:

print "Tol increased for nid %g due to empty range tree search"\

% nid

new_tol = tol*10.0

mesh1.SetPointInsideTolerance(new_tol)

tol = new_tol

mate_eid = -1

main_flag = 0

Loop through associated elems and look for containing mate_side elem

in previous mesh (won't be the case for nodes in new surface area).

for eid in elist:

if eid in mate_side_elems1:

mate_eid = eid

break

if eid in main_side_elems1:

main_flag = 1

If a main_side element was associated, but not a mate_side element,

then enter while loop to increase query tolerance.

while mate_eid == -1 and main_flag == 1:

new_tol = tol*10.0

print "increasing tolerance to %f for nid %g" % (new_tol,nid)

mesh1.SetPointInsideTolerance(new_tol)

elist = mesh1.GetElemsAtPoint(pt)

73

for eid in elist:

if eid in mate_side_elems1:

mate_eid = eid

break

tol = new_tol

disp = mesh1.GetPtDisp(pt,mate_eid) # No averaging over adjacent elems

crkface_node_disps[nid] = disp

print "looped through all mate_side_nodes2"

return crkface_node_disps, initial_tol

**************** mapDisplacementsToUndeformedMesh MAIN *******************

mapped_disps = {}

Note: Displacements currently associated with mesh1 are initial disps,

which were mapped during previous run of this script.

for nid in abs_disps:

coord = Vec3D.Vec3D(abs_disps[nid][0],abs_disps[nid][1],abs_disps[nid][2])

mesh1.UpdateNodalDisps(nid,coord)

Map node displacements at the crack face nodes first

(this routine interpolates displacements for points only within the

containing crackface element and doesn't average over surrounding elements)

(crkface_node_disps, initial_tol) = mapCrackFaceNodeDisps()

Now map node displacements for all nodes

mesh2nodes = mesh2.GetNodeList()

mesh2nodes.sort()

Note that pt_query tolerance may be increased if a node is not deemed

inside the previous mesh; if tolerance is increased to the min. edge

length, an error is raised and the script is terminated.

for nid in mesh2nodes:

tol = initial_tol

if nid in crkface_node_disps:

mapped_disps[nid] = crkface_node_disps[nid]

else:

info = mesh2.GetNodeInfo(nid)

pt = info[0]

status,dist = mesh1.IsPointOutsideMesh(pt)

Status: -2 --> query_pt is clearly inside previous mesh

-1 --> query_pt is close to surface, but not clearly inside

-3 --> query_pt is not inside previous mesh

while status != -2:

if status == -1:

new_tol = tol*10.0

(Uncomment these lines to put a limit on search tol)

#if new_tol > initial_tol*1000.0:

#print "MeshTools tolerance exceeded smallest edge length!"

#print "Node id %i of currMesh is within %f of prevMesh \

surface" % (nid,dist)

#exit(0)

mesh1.SetPointInsideTolerance(new_tol)

status,dist = mesh1.IsPointOutsideMesh(pt)

74

tol = new_tol

print "Tolerance has been reset to %f due to nid %i of currMesh"\

% (tol,nid)

else:

txt = "Query point must be inside mesh"

raise ValueError, txt

If the tolerance was increased for nid, reset to original

mesh1.SetPointInsideTolerance(initial_tol)

Get displacement by interpolating displacements from prevMesh

at point of interest

mapped_disps[nid] = mesh1.GetPtDisp(pt)

return mapped_disps

****************** APPEND MAPPED DISP RESULTS TO .MODEL FILE ********************

def writeMappedDispsToFile(mapped_disps,currInpFile,stepName,frame):

Write the mapped displacement info to a .txt file

Create mapped_disp.txt in same directory as current input file

changeDirectory(currInpFile)

file = open("mapped_disp.txt","w")

file.write("Displacements mapped from: %s Increment: %i\n" % (stepName,frame))

for nid in mapped_disps:

file.write("%i %.16e %.16e %.16e\n" % (nid,mapped_disps[nid][0],\

mapped_disps[nid][1],\

mapped_disps[nid][2]))

file.close()

*********************** COMPUTE DEFORMED COORDINATES **************************

**************** For Global Region (if applicable) **************

def computeGlobalCoords(odbFile,stepName,frame,g_relative_disps,g_odbIndices):

Create dictionary of final coordinates for global nodes in previous mesh

g_new_coords = {nid: (x,y,z)}

print "Computing absolute disps for global region"

g_new_coords = {}

if len(g_relative_disps) != len(g_odbIndices):

print "Length of global node index list and rel_disp dict inconsistent!"

eixt(0)

try:

odb = odbAccess.openOdb(path=odbFile,readOnly=TRUE)

except:

print "ERROR: Unable to open %s" % odbFile

exit(0)

Initiate a counter for g_new_coords dict

cnt = 1

Simply add relative disps. to node coords to get deformed coords

for global region of previous mesh (no inverse isoparametric

mapping involved)

75

for instance in odb.rootAssembly.instances.keys():

instance = odb.rootAssembly.instances[instance]

for index in g_odbIndices:

tmp = []

node = instance.nodes[index]

nid = node.label

for i in range(0,3):

val = float(g_relative_disps[nid][i])+float(node.coordinates[i])

tmp.append(val)

g_new_coords[cnt] = tmp

cnt+=1

odb.close()

return g_new_coords

**************** For Local or Entire Region (whichever applicable) **************

def computeDeformedCoords(currInpFile,mapped_disps):

Change directories to location of current .inp file if not there already

changeDirectory(currInpFile)

undef_coords = {}

def_coords = {}

scale = 1

Parse the original .inp for the current mesh to get the undeformed coords.

file = open(currInpFile,"r")

line = file.readline()

while line:

if line[0:5].upper() == "*NODE":

line = file.readline()

while line[0:1] != "*":

data = line.split(",")

nid = int(data[0])

undef_coords[nid] = [float(data[1]),float(data[2]),float(data[3])]

line = file.readline()

break

line = file.readline()

file.close()

Do a quick check that min/max node id's are consistent

if max(undef_coords) != max(mapped_disps) or \

min(undef_coords) != min(mapped_disps):

print "***Node numbering is inconsistent between .inp file and \

mapped_disps dict!\n"

exit(0)

Compute deformed nodal coordinates

for nid in undef_coords:

x_new = undef_coords[nid][0]+mapped_disps[nid][0]*scale

y_new = undef_coords[nid][1]+mapped_disps[nid][1]*scale

z_new = undef_coords[nid][2]+mapped_disps[nid][2]*scale

def_coords[nid] = [x_new,y_new,z_new]

76

return def_coords

************************** WRITE DEFORMED MESH (.inp) ***************************

def writeDeformedInpFile(def_coords,g_def_coords,currInpFile,stepNum,frame,res):

*************** Scan input file for BC nodesets SUB-FUNCTION ***************

def getBCnodesets(inpFile):

Scan for BC nodesets

BCnodes = []

ifile = open(inpFile,"r")

line = ifile.readline()

while line[0:6].upper() != "*BOUND":

line = ifile.readline()

while line:

line = ifile.readline()

while line[0:1] != "*":

nset = line.split(",")[0]

if nset not in BCnodes:

BCnodes.append(nset)

line = ifile.readline()

line = ifile.readline()

while line and line[0:6].upper() != "*BOUND":

line = ifile.readline()

ifile.close()

return BCnodes

******************** writeDeformedInputFile SUB-FUNCTION ********************

def writeFile(copyFile,currInpFile,def_coords,g_def_coords,stepNum,frame,\

BCnodes,res):

ifile = open(copyFile,"r") # Read the original file for copying

ofile = open(currInpFile,"w") # Overwrite the original as deformed

print "***Writing deformed .inp file...\n"

line = ifile.readline()

while line[0:5].upper() != "*NODE":

ofile.write(line)

line = ifile.readline()

print "len of def_coords:"

print len(def_coords)

print "max. val in def_coords:"

print max(def_coords)

print "len of g_def_coords:"

print len(g_def_coords)

Write new, deformed nodal information

ofile.write("*Node\n")

for nid in def_coords:

ofile.write(str(nid)+", "+str(def_coords[nid][0])+", "+\

str(def_coords[nid][1])+", "+\

77

str(def_coords[nid][2])+"\n")

If local-global analysis, insert the deformed node coords for

global region

line = ifile.readline()

if len(g_def_coords) > 0:

g_currNodeList = [] # A list of global nids to check against

offset = max(def_coords) # The max. nid of the local region

nid = line.split(",")[0]

while nid != offset:

line = ifile.readline()

nid = int(line.split(",")[0])

After reaching offset, start writing global info

for i in range(1,len(g_def_coords)+1):

line = ifile.readline()

g_nid = line.split(",")[0]

g_currNodeList.append(g_nid)

ofile.write(str(g_nid)+", "+str(g_def_coords[i][0])+", "+\

str(g_def_coords[i][1])+", "+\

str(g_def_coords[i][2])+"\n")

Check that the number of global nodes in previous and

current models is the same

if len(g_def_coords) != len(g_currNodeList):

print "The number of global nodes do not correspond \

between old and new mesh models"

print "Check script!"

exit(0)

Now copy the rest of the file data

line = ifile.readline()

while line[0:8].upper() != "*ELEMENT":

line = ifile.readline()

ofile.write(line)

line = ifile.readline()

while line[0:5].upper() != "*STEP":

ofile.write(line)

line = ifile.readline()

Write map step before first step

if res == "Y": # Step number includes the Equilibrate step \

from first analysis

newline = "*MAP SOLUTION,STEP=%d,INC=%d,UNBALANCED STRESS=RAMP\n**\n" %\

(stepNum+1,frame)

else:

newline = "*MAP SOLUTION,STEP=%d,INC=%d,UNBALANCED STRESS=RAMP\n**\n" %\

(stepNum,frame)

ofile.write(newline)

newline = "** Name: Constrained Type: Displacement/Rotation\n**\n"

ofile.write(newline)

newline = "**\n*Step, name=Equilibrate\n*Static\n0.25, 1., 1e-05, 0.25\n"

ofile.write(newline)

newline = "**\n*Restart, write, frequency=1, overlay\n"

ofile.write(newline)

78

newline = "*File Format, ASCII\n"

ofile.write(newline)

newline = "*Node File, Frequency=9999\n"

ofile.write(newline)

newline = "U,\n"

ofile.write(newline)

newline = "**\n** BOUNDARY CONDITIONS\n**\n"

ofile.write(newline)

for i in range(len(BCnodes)):

newline = "**Name: Fixed_%d Type: Displacement/Rotation\n" % i

ofile.write(newline)

newline = "*Boundary\n%s, 1, 1\n%s, 2, 2\n%s, 3, 3\n" % \

(BCnodes[i],BCnodes[i],BCnodes[i])

ofile.write(newline)

newline = "**\n*End Step\n** --\n"

ofile.write(newline)

Write the rest of the file, adding "op=NEW" to boundary

condition line, which deactivates BC's from the mapping step.

while line:

if line[0:6].upper() == "*BOUND":

line = "*Boundary, op=NEW\n"

ofile.write(line)

line = ifile.readline()

continue

ofile.write(line)

line = ifile.readline()

ifile.close()

ofile.close()

********************** writeDeformedInputFile MAIN **************************

Move undeformed input file to new directory

dir = createSubDirectory(currInpFile,"Undeformed")

fname = currInpFile.split("/")[-1].split(".")

copyFile = dir+fname[-2]+"_Undeformed."+fname[-1]

if not os.path.exists(copyFile):

os.rename(currInpFile,copyFile)

Prescan the original input to get nodes(or nodesets) with

prescribed BC's before writing the deformed input file.

BCnodes = getBCnodesets(copyFile)

Write the deformed input file

writeFile(copyFile,currInpFile,def_coords,g_def_coords,stepNum,frame,BCnodes,res)

*********************************** MAIN ***

**

if __name__ == "__main__":

print __doc__

path = os.getcwd

res = sys.argv[-10] # "Y" if mapping from a previous restart file

79

localglobal = sys.argv[-9]

prevInp = sys.argv[-8] # Previous .inp file (local only, if applicable)

fdbPrev = sys.argv[-7]

odbFile = sys.argv[-6]

currInpFile = sys.argv[-5] # local region only if local-global analysis

currInpFile_full = sys.argv[-4] # *_full.inp; Empty if not local-global analysis

fdbCurr = sys.argv[-3]

stepName = sys.argv[-2]

frame = int(sys.argv[-1])

start_time = time.time()

Check for file with initial displacements; get them.

initial_disps = getInitialDisplacements(fdbPrev)

Create MeshTools object of the current and previous .inp files

prevMesh = createMeshToolsObject(prevInp,"INP")

currMesh = createMeshToolsObject(currInpFile,"INP")

Get list of nodes from previous mesh

oldNodeList = prevMesh.GetNodeList()

Function returns stepNum corresponding to stepName,

list of all nodes in previous odb,

dictionary of odb disps for all nodes **if not local-global**

dictionaries of odb disps for local and global regions **if local-global**

(empty dicts if inapplicable)

(stepNum,prevFullNodeList,relative_disps,l_relative_disps,\

g_relative_disps,g_odbIndices) = getRelativeDisplacements(odbFile,\

stepName,frame,oldNodeList,localglobal)

if localglobal == "N":

All arguments --> entire mesh

abs_disps = computeAbsoluteDisplacements(initial_disps,\

relative_disps,prevFullNodeList,prevMesh)

elif localglobal == "Y":

All arguments --> local region only

abs_disps = computeAbsoluteDisplacements(initial_disps,l_relative_disps,\

oldNodeList,prevMesh)

Map displacements (only on local region, if applicable)

mapped_disps = mapDisplacementsToUndeformedMesh(prevMesh,abs_disps,currMesh)

writeMappedDispsToFile(mapped_disps,currInpFile,stepName,frame)

Compute deformed coordinates

def_coords = computeDeformedCoords(currInpFile,mapped_disps)

if localglobal == "Y":

Simply add global node disps to node coords of previous odb

g_def_coords = computeGlobalCoords(odbFile,stepName,frame,\

g_relative_disps,g_odbIndices)

elif localglobal == "N":

g_def_coords = []

Write the deformed input file

if localglobal == "Y":

Write deformed *_full.inp file; move undeformed input

80

files to *_Undeformed folder

writeDeformedInpFile(def_coords,g_def_coords,currInpFile_full,\

stepNum,frame,res)

new_path = str()

tmp = currInpFile.split("/")

fileName = tmp[-1]

tmp[-1] = "Undeformed"

for i in range(len(tmp)):

new_path+=tmp[i]+"/"

new_path+=fileName

os.rename(currInpFile,new_path)

elif localglobal == "N":

Write deformed *.inp file

writeDeformedInpFile(def_coords,g_def_coords,currInpFile,\

stepNum,frame,res)

printTimeStamp(start_time)

#exit(0)

C. Details from Integrally-sti�ened Panel Test Program

Researchers at Alcoa Technical Center fabricated several ISPs as part of a test program in 1998.

The purpose of the test program was to compare fatigue crack growth and residual strength among

ISPs machined from either of two, lower wing skin, aluminum alloys�AA 2024-T351 or C433-T39.

Test information has been utilized by others for analysis purposes [15, 57, 59]. Alcoa Technical

Center has provided the current authors with test details, which are provided here for completeness.

Fatigue crack growth and residual strength tests were conducted at Alcoa Technical Center for

four ISPs, two machined from AA 2024-T351 and two machined from C433-T39. Dimensions of all

panels are shown in Fig. 16. In each panel, an initial two-bay saw cut of length 2asaw ≈ 2.54 cm was

made at mid-height to completely sever the middle sti�ener. The initial cut was then pre-cracked

to length 2a0 ≈ 5.08 cm by applying uniaxial cyclic load in the y-direction, where Pmin = 31 kN

and Pmax = 311 kN. Subsequently, a modi�ed transport wing standard (TWIST) loading spectrum

[60], shown in Table 6, was applied in the y-direction to propagate the fatigue crack. The applied

spectrum had a mean �ight stress of Smf = 68.9 MPa, truncated to level V, and included a ground-

air-ground (GAG) cycle with a reduced ground level stress of Sground = −34.5 MPa. Taxi loads

were neglected. Depending on the panel, the fatigue crack was propagated until both crack fronts

were 2.54 cm short of reaching the intact sti�eners (2ai ≈ 24.1 cm) or until both crack fronts just

81

entered the intact sti�eners (2ai ≈ 30.0 cm). Subsequently, each panel was loaded monotonically in

uniaxial tension until failure occurred by unstable crack growth. A test matrix of the four panels

and corresponding residual strengths is shown in Table 7. The ISP simulated in this work follows

panels 5 and 5A.

Table 6 Standard TWIST spectrum scaled to mean �ight stress Smf = 68.9 MPa with variable
amplitude loads Sa (left). Modi�ed spectrum (right) applied uniaxially to the Alcoa ISP prior
to residual strength testing. Courtesy Alcoa Technical Center.

Table 7 Description of all ISPs and corresponding residual strengths from Alcoa test program.
Courtesy Alcoa Technical Center.

82

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

2. REPORT TYPE

Technical Memorandum
 4. TITLE AND SUBTITLE

Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time
Residual Strength Predictions

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea,
Anthony R.; and Hochhalter, Jacob D.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-19954

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 26
Availability: NASA CASI (443) 757-5802

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

A surrogate model methodology is described for predicting, during flight, the residual strength of aircraft structures that
sustain discrete-source damage. Starting with design of experiment, an artifcial neural network is developed that takes as input
discretesource damage parameters and outputs a prediction of the structural residual strength. Target residual strength values
used to train the artificial neural network are derived from 3D finite element-based fracture simulations. Two ductile fracture
simulations are presented to show that crack growth and residual strength are determined more accurately in discrete-source
damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method.
Improving accuracy of the residual strength training data does, in turn, improve accuracy of the surrogate model. When
combined, the surrogate model methodology and high fidelity fracture simulation framework provide useful tools for adaptive
flight technology.

15. SUBJECT TERMS

Residual Strength; Metals; Metallic Materials; Genetic Algorithms; Fracture; Adaptive Flight Technology

18. NUMBER
 OF
 PAGES

87

19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

284848.02.05.07.02

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/TM-2011-216879

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

01 - 201101-

